Position:Home >> Abstract

The design of a polybenzimidazole blended membrane for
aqueous organic redox flow batteries
Authors: CAO Haiyan1, WANG Zhaoqi2, GAO Jiaming2, XIE Xuanyu2, ZHANG Linjuan3, WANG Jianqiang3, ZHOU Mingdong1
Units: 1. School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; 2. Department of Chemistry, Fudan University, Shanghai 200438, China; 3. Energy Materials and Chemistry Research Division, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
KeyWords: polybenzimidazole; cellulose acetate; blended membranes; aqueous organic redox flow batteries
ClassificationCode:TQ425.23
year,volume(issue):pagination: 2025,45(4):143-151

Abstract:
A novel polybenzimidazole (PBI)-based blended membrane was fabricated by physically blending cellulose acetate (CA) and polyvinylpyrrolidone (PVP) with the rigid-structured PBI matrix. PVP acted as a pore-forming agent, increasing membrane porosity, while the incorporation of CA reduced swelling and enhanced mechanical strength. A comprehensive evaluation of membranes properties,including mechanical properties, water uptake, swelling ratio, area resistance and ionic conductivity, revealed that the PBI blended membrane with 2.5% CP exhibited the most favorable electrochemical performance and the overall performance had certain advantages. When applied in an alkaline aqueous organic redox flow battery (AORFB) using 2,6-dihydroxyanthraquinone (2,6-DHAQ) and potassium ferrocyanide {K4[Fe(CN)6]} as active species, the AORFB assembled with the 2.5%CPPBI membrane achieved a maximum power density of 159 mW/cm2 and an energy efficiency of 82.8% at a current density of 80 mA/cm2, outperforming the commercial Nafion117 membrane. Moreover, the system demonstrated excellent cycling stability, with a capacity decay rate of only 0.000 6% over 500 charge-discharge cycles. 
 

Funds:
中国科学院前瞻战略科技先导专项(XDA0400000)资助

AuthorIntro:
曹海燕(2000-), 女, 山东潍坊人, 硕士研究生, 主要从事离子交换膜制备与性能研究

Reference:
[1]Park G, Eun S, Lee W, et al. Polybenzimidazole membrane based aqueous redox flow batteries using anthraquinone-2,7-disulfonic acid and vanadium as redox couple[J]. J Power Sources, 2023, 569: 233015.
[2]Bui T T, Shin M, Abbas S, et al. Sulfonated para-polybenzimidazole membranes for use in vanadium redox flow batteries[J]. Adv Energy Mater, 2024: 2401375.
[3]Ye C, Tan R, Wang A, et al. Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes[J]. Angew Chem Int Ed, 2022, 61(38): e202207580.
[4]Zhai L, Zhu Y L, Wang G, et al. Ionic-nanophase hybridization of Nafion by supramolecular patching for enhanced proton selectivity in redox flow batteries[J]. Nano Lett, 2023, 23(9): 3887-3896.
[5]Service R F. Advances in flow batteries promise cheap backup power[J]. Science, 2018, 362(6414): 508-509.
[6]Hu B, DeBruler C, Rhodes Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. J Am Chem Soc, 2017, 139(3): 1207-1214.
[7]Ding Y, Zhang C, Zhang L, et al. Molecular engineering of organic electroactive materials for redox flow batteries[J]. Chem Soc Rev, 2018, 47(1): 69-103.
[8]Fu Y, Howard A, Zeng C, et al. Physics-guided continual learning for predicting emerging aqueous organic redox flow battery material performance[J]. ACS Energy Lett, 2024, 9(6): 2767-2774.
[9]彭康, 左培培, 杨正金, 等. 面向水系有机液流电池的离子交换膜[J]. 膜科学与技术, 2023, 43(6): 98-111.
[10]Wang A, Breakwell C, Foglia F, et al. Selective ion transport through hydrated micropores in polymer membranes[J]. Nature, 2024, 635(8038): 353-358.
[11]Aili D, Yang J, Jankova K, et al. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides[J]. J Mater Chem A, 2020, 8(26): 12854-12886.
[12]Wu J, Liao C, Li T, et al. Metal-coordinated polybenzimidazole membranes with preferential K+ transport[J]. Nat Commun, 2023, 14(1): 1149.
[13]Ikhsan M M, Abbas S, Do X H, et al. Sulfonated polystyrene/polybenzimidazole bilayer membranes for vanadium redox flow batteries[J]. Adv Energy Mater, 2024: 2400139.
[14]Lu W, Yuan Z, Zhao Y, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Mater, 2018, 10: 40-47.
[15]Yang T, Shi G M, Chung T S. Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/Polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures[J]. Adv Energy Mater, 2012, 2(11): 1358-1367.
[16]Muhmed S A, Nor N A M, Jaafar J, et al. Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: A review[J]. Energy Ecol Environ, 2020, 5(2): 85-107.
[17]Palanisamy G, Sadhasivam T, Park W S, et al. Tuning the ion selectivity and chemical stability of a biocellulose membrane by PFSA ionomer reinforcement for vanadium redox flow battery applications[J]. ACS Sustainable Chem Eng, 2020, 8(4): 2040-2051.
[18]王小舟. 聚苯并咪唑基阴离子交换膜的离子通道构建 [D]. 大连: 大连理工大学, 2022.
[19]Wang Z, Zhang S, Liu Q, et al. Preparation and characterization of the side-chain quaternized poly(phthalazinone ether ketone)s with phenyl groups for vanadium redox flow battery[J]. J Membr Sci, 2021, 633: 119416.
[20]Tan R, Wang A, Malpass-Evans R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nat Mater, 2020, 19(2): 195-202.
[21]Zuo P, Ye C, Jiao Z, et al. Near-frictionless ion transport within triazine framework membranes[J]. Nature, 2023, 617(7960): 299-305.
[22]Zavastin D, Cretescu I, Bezdadea M, et al. Preparation, characterization and applicability of cellulose acetate-polyurethane blend membrane in separation techniques[J]. Colloid Surf A-Physicochem Eng Asp, 2010, 370(1): 120-128.
[23]Mehta P, Vedachalam S, Sathyaraj G, et al. Fast sensing ammonia at room temperature with proline ionic liquid incorporated cellulose acetate membranes[J]. J Mol Liq, 2020, 305: 112820.
[24]Song X, Ding L, Wang L, et al. Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries[J]. Electrochim Acta, 2019, 295: 1034-1043.
[25]Kumar V, Mondal S, Nandy A, et al. Analysis of polybenzimidazole and polyvinylpyrrolidone blend membranes as separating barrier in single chambered microbial fuel cells[J]. Biochem Eng J, 2016, 111: 34-42.
[26]Zuo P, Li Y, Wang A, et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage[J]. Angew Chem Int Ed, 2020, 59(24): 9564-9573.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号