Position:Home >> Abstract

Preparation and performance study of superhydrophilic
polyimide nanofiber membranes
Authors: ZHAO Jingyu1, JIA Fengwei1, ZHANG Yingjie1,2, CHENG Xiquan1,2, WANG Kai1,2
Units: 1. College of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China; 2. Sino-European Institute of Membrane Technology, Weihai 264209, China
KeyWords: superhydrophilic; nanofibre membranes; oil-water separation; electrospinning
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2025,45(4):162-172

Abstract:
Membrane separation technology, as an efficient method for treating oily wastewater, has shown significant advantages in the field of oil-water separation. However, the large-scale application of this technology is limited by the performance of membrane materials, mainly manifested in insufficient permeation flux and poor anti-pollution performance. In this paper, polyimide (PI) nanofiber membranes were prepared by electrospinning technology, and then coated with γ-glycidoxypropyltrimethoxysilane (KH550) and dopamine to obtain superhydrophilic nanofiber membranes for ultrafast separation of oil-in-water emulsions. The experimental results showed that through surface hydrophilic modification and surface coating with KH550, superhydrophilic polyimide nanofiber oil-water separation membranes with micro-nano hydrophilic structures could be effectively constructed. The surface morphology, chemical composition and wetting properties of the membrane were analyzed in detail by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle meter (CA) and other characterization methods, verifying its superhydrophilic characteristics. The contact angle of the modified membrane was 8°±1°, and it had excellent anti-pollution performance, with an underwater oil contact angle of 155°±1° and a water droplet passing time through the membrane within 0.5 s. The water flux of the membrane was 18 705 L/(m2·h·MPa), and the oil-water separation efficiency for n-octane emulsion reached 99.4%, achieving excellent superhydrophilic performance and showing strong application prospects in the separation of oil-in-water emulsions. 
 

Funds:
山东省重点研发计划(竞争性创新平台)项目(2023CXPT068)

AuthorIntro:
赵静钰(1999-),女,云南蒙自人,硕士研究生,主要从事纳米纤维膜制备及性能研究

Reference:
[1]Wang X, Yu J, Sun G, et al. Electrospun nanofibrous materials: A versatile medium for effective oil/water separation[J]. Materials, 2016, 19(7): 403-414.
[2]Mark A S, Paul W B, Menachem E, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452 (7185): 301-310.
[3]Ling S J, Qin Z, Huang W W, et al. Design and function of biomimetic multilayer water purification membranes[J]. Sci Advances, 2017, 3(4): 1601939.
[4]Padaki M, Murali R S, Abdullah M S, et al. Membrane technology enhancement in oil-water separation. A review[J]. Desalination, 2015, 357: 197-207.
[5]You H, Jin Y Z, Chen J C, et al. Direct coating of a DKGM hydrogel on glass fabric for multifunctional oil-water separation in harsh environments[J]. Chem Eng J, 2018, 334: 2273-2282.
[6]Ariana M A Vítor J P, Vilar M S, et al. Optimization of a primary gravity separation treatment for vegetable oil refinery wastewaters[J]. Clean Technol Environ, 2014, 16(8): 1725-1734.
[7]Sato M, Sumita I. Experiments on gravitational phase separation of binary immiscible fluids[J]. J Fluid Mech, 2007, 591: 289-319.
[8]Ramaswamy B, Kar D D, De S. A study on recovery of oil from sludge containing oil using froth flotation[J]. J Environ Manage, 2007, 85(1): 150-154.
[9]Etchepare R H, Oliveira A, Azevedo J R. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J] Sep Purif, 2017, 186: 326-332.
[10]Wang X, Wang Q H, Wang S J, et al. Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge[J]. Bioresour Technol, 2012,111: 308-315.
[11]Roberts P, Thomas K. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment[J]. Sci Total Environ, 2006, 356(1/2/3): 143-153.
[12]赵元元. 聚偏氟乙烯超亲水膜的制备与油水分离性能研究[D]. 哈尔滨:哈尔滨工业大学, 2023.
[13]Zhang J Y, Fang W X, Zhang F, et al. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation[J]. J Membr Sci, 2020, 608: 118201- 118247.
[14]陈新宇. 超亲水膜材料的制备及其在乳液分离中的应用[D]. 苏州:苏州大学, 2020.
[15]李艳芳. PAM/TiO2改性制备三种超亲水膜及其油水分离性能[J]. 塑料, 2021, 50 (4): 43-47.
[16]Song H M, Chen C, Shui X X, et al. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation[J]. J Membr Sci, 2019, 573: 126-134.
[17]唐鹏程. 防污超亲水膜的设计制备及在乳液分离和染料降解中的应用[D]. 武汉:湖北大学, 2024.
[18]张子旭, 杨景, 林立刚, 等. 基于纤维素凝胶层修饰的高通量分离膜及其染料/盐分离性能[J]. 膜科学与技术, 2024, 44(6): 71-77.
[19]高鹏举. 超疏水聚酰亚胺纳米纤维膜制备及油水分离研究[D]. 哈尔滨:哈尔滨工业大学, 2022.
[20]王振兴. 基于多巴胺的聚偏氟乙烯膜表面亲水化改性及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2017. 
[21]汪祺, 邓雪松, 郑甜甜, 等. 仿蜘蛛网结构油水分离膜的制备和性能探索[J]. 膜科学与技术, 2021, 41(2): 9-17.
[22]李玉懂, 张晶, 李妍妍, 等. 基于多巴胺亲水改性的聚丙烯中空纤维膜及油水分离性能研究[J]. 膜科学与技术, 2024, 44(5): 20-31.
[23]杨思民, 王建强, 刘富. 油水分离膜研究进展[J].膜科学与技术, 2019, 39(3): 132-141.
[24]常晓晶. 仿生材料多巴胺对聚偏氟乙烯超滤膜改性的研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[25]Lee M W, An S, Latthe S S, et al. Electrospun polystyrene nanofiber membrane with superhydro-phobicity and superoleophilicity for selective separation of water and low viscous oil[J].ACS Appl Mater Inter, 2013, 5(21):10597-10604. 
[26]Ma R H, Lu X L, Kong X, et al. A method of controllable positive-charged modification of PVDFCTFE membrane surface based on C-Cl active site[J]. J Membr Sci, 2021, 620: 118936. 
[27]Park E J, Park B C, Kim Y J, et al. Elimination and substitution compete during amination of poly(vinyl chloride) with ehtylenediamine: XPS analysis and approach of active site index[J]. Macromol Res, 2018, 26(10): 913-923.
[28]黄子为, 霍虹懿, 龙科, 等. 聚多巴胺涂覆的磺丁基醚β环糊精开管毛细管电色谱柱的制备及应用[J]. 分析试验室, 2024, 43(4): 497-501.
[29]Wang Z X, Lau C H, Zhang N Q, et al. Mussel-inspired tailoring of membrane  wettability for harsh water treatment[J]. J Mater Chem A, 2015, 3: 2650-2657.  
[30]Xu Y C, Wang Z X, Cheng X Q, et al. Positively charged nanofiltration membranes  via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chem Eng J, 2016, 303:555-564.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号