Research progress in preparation of polyamide nanofiltration membranes by monomer diffusion controlled interfacial polymerization |
Authors: LIU Jiahuan1,2, WANG Jianqiang2,3, LIU Fu2,3 |
Units: 1. School of materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; 2. Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 3. Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Ningbo 315201, China |
KeyWords: interfacial polymerization; monomer diffusion; polyamide; nanofiltration membrane |
ClassificationCode:TQ028 |
year,volume(issue):pagination: 2025,45(4):194-205 |
Abstract: |
Nanofiltration, characterized by its high efficiency, mild operation, and strong adaptability, has always attracted much attention in alleviating the global water crisis. Thin-film composite polyamide nanofiltration membrane is the most applied nanofiltration membrane product. Its separation performance is mainly affected by the properties of the polyamide separation layer. Interfacial polymerization is the commonly used method for fabricating polyamide separation layer. However, the rapid reaction rate and difficulty for structure manipulation are the key problems in this method. Recent years, many works have been developed for the fabricating thin-film composite polyamide nanofiltration membrane. Monomer diffusion control is a simple, effective and scalable strategy for solving the above problem. This article presents the research progress in recent years on the preparation of nanofiltration membranes by regulating the monomer diffusion, aiming to revealing the mechanism for its effect on structure control and separation performances. It also tends to provide references for the application of laboratory membrane fabrication in practical scenarios. |
Funds: |
浙江省领雁研发计划“高效选择性纳滤膜材料研发与应用”[2024C03284(SD2)] |
AuthorIntro: |
刘佳欢(2000-),女,山东菏泽人,硕士研究生,主要从事纳滤膜制备及其性能研究 |
Reference: |
[1]Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. [2]Pendergast M M, Hoek E M V. A review of water treatment membrane nanotechnologies[J]. Energy Environ Sci, 2011, 4(6): 1946-1971. [3]Zhao Y, Tong T, Wang X, et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: A review[J]. Environ Sci Technol, 2021, 55(3): 1359-1376. [4]Abdel-Fatah M A. Nanofiltration systems and applications in wastewater treatment: Review article[J]. Ain Shams Eng J, 2018, 9(4): 3077-3092. [5]Gohil J M, Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination[J]. Sep Purif Technol, 2017, 181: 159-182. [6]Cadotte J E, King R S, Majerle R J, et al. Interfacial synthesis in the preparation of reverse osmosis membranes[J]. J Macromol Sci A, 1981, 15(5): 727-755. [7]Wang K, Wang X, Januszewski B, et al. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships[J]. Chem Soc Rev, 2022, 51(2): 672-719. [8]Lu X, Elimelech M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions[J]. Chem Soc Rev, 2021, 50(11): 6290-6307. [9]Yang Z, Guo H, Tang C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. J Membr Sci, 2019, 590: 117297. [10]Geise G M, Park H B, Sagle A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. J Membr Sci, 2011, 369(1): 130-138. [11]Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chem Soc Rev, 2016, 45(21): 5888-5924. [12]付欣宇,王建强,计艳丽,等. 不对称双层聚酰胺纳滤膜的制备及其性能研究[J]. 膜科学与技术, 2023, 43(5): 50-57. [13]Liu Y, Liu L, Narendra B, et al. Advancing high-performance nanofiltration membranes: Tailoring monomer molecular design to enhance diffusion-reaction synergy in interfacial polymerization[J]. Desalination, 2025, 598: 118415. [14]Baig U, Waheed A, Ahmad H, et al. Synthesis of methyl 3,5-diaminobenzoate to develop polyamide thin film composite membrane for investigating the impact of in-situ methyl hydrolysis on its permeate flux and sulfate rejection[J]. Sep Purif Technol, 2025: 132178. [15]Chen H, Zhao F, Zhang X, et al. Design an in-situ anti-bacterial structure of nanofiltration membrane with a novel bisimidazoline aqueous monomer[J]. J Membr Sci, 2024, 707: 122992. [16]Peng H, Yu K, Liu X, et al. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes[J]. Nat Commun, 2023, 14(1): 5483. [17]Wang K, Fu W, Wang X, et al. Molecular design of the polyamide layer structure of nanofiltration membranes by sacrificing hydrolyzable groups toward enhanced separation performance[J]. Environ Sci Technol, 2022, 56(24): 17955-17964. [18]Zhang Y, Wang H, Guo J, et al. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes[J]. Science, 2023, 382(6667): 202-206. [19]Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. [20]Karan S, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. [21]Li J, Yuan S, Zhu J, et al. High-flux, antibacterial composite membranes via polydopamine-assisted PEITiO2/Ag modification for dye removal[J]. Chem Eng J, 2019, 373: 275-284. [22]Freger V, Srebnik S. Mathematical model of charge and density distributions in interfacial polymerization of thin films[J]. J Appl Polym Sci, 2003, 88(5): 1162-1169. [23]Werber J R, Deshmukh A, Elimelech M. The critical need for increased selectivity, not increased water permeability, for desalination membranes[J]. Environ Sci Technol Lett, 2016, 3(4): 112-120. [24]Ma Z, Zhang X, Liu C, et al. Polyamide nanofilms synthesized via controlled interfacial polymerization on a “jelly” surface[J]. Chem Commun, 2020, 56(53): 7249-7252. [25]Cheng X, Lai C, Li J, et al. Toward enhancing desalination and heavy metal removal of TFC nanofiltration membranes: A cost-effective interface temperature-regulated interfacial polymerization[J]. ACS Appl Mater Interfaces, 2021, 13(48): 57998-58010. [26]鲁艺文,吕晓龙,任凯,等. 多羟基单体调控分离层结构制备高性能净水用纳滤膜[J]. 膜科学与技术, 2024, 44(5): 108-116. [27]Xin J, Fan H, Guo B, et al. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes[J]. Chem Commun, 2023, 59(89): 13258-13271. [28]Wittbecker E L, Morgan P W. Interfacial polycondensation. Ⅰ[J]. J Polym Sci, 1959, 40(137): 289-297. [29]李文远,吕晓龙,任凯,等. 中间层构建及其反渗透复合膜性能的探讨[J]. 膜科学与技术, 2024, 44(5): 150-155. [30]Yang Z, Zhou Z, Guo H, et al. Tannic Acid/Fe3+ nanoscaffold for interfacial polymerization: Toward enhanced nanofiltration performance[J]. Environ Sci Technol, 2018, 52(16): 9341-9349. [31]Zhao W, Liu H, Liu Y, et al. Thin-film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube[J]. ACS Appl Mater Interfaces, 2018, 10(40): 34464-34474. [32]Wei S, Ding X, Qiu Y, et al. Enhanced performance polyamide membrane by introducing high-porosity SOD/GO composite interlayer to tailor the interfacial polymerization process[J]. Chem Eng J, 2024, 481: 148595. [33]Wu M B, Lyu Y, Yang H C, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. J Membr Sci, 2016, 515: 238-244. [34]Gong G, Wang P, Zhou Z, et al. New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane[J]. ACS Appl Mater Interfaces, 2019, 11(7): 7349-7356. [35]Wang J, Yang H, Wu M, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. J Mater Chem A, 2017, 5(31): 16289-16295. [36]Zhang X, Lv Y, Yang H, et al. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance[J]. ACS Appl Mater Interfaces, 2016, 8(47): 32512-32519. [37]Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chem Soc Rev, 2012, 41(18): 6010-6022. [38]Fu J, Das S, Xing G, et al. Fabrication of COFMOF composite membranes and their highly selective separation of H2/CO2[J]. J Am Chem Soc, 2016, 138(24): 7673-7680. [39]杜海洋, 张文娟, 温书,等. 基于金属有机骨架(MOFs)的纳滤膜制备研究现状[J]. 膜科学与技术, 2022, 42(2): 154-162. [40]Yuan J, Wu M, Wu H, et al. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes[J]. J Mater Chem A, 2019, 7(44): 25641-25649. [41]Wang Z, Wang Z, Lin S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nat Commun, 2018, 9(1): 2004. [42]Dai R, Li J, Wang Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review[J]. Adv Colloid Interface Sci, 2020, 282: 102204. [43]Ren X, Wang L, Fu H, et al. Interfacial polymerization process based on diffusion control: Role of chemical composition and morphology on fouling resistance[J]. J Environ Chem Eng, 2023, 11(5): 110511. [44]Liu B, Wang S, Zhao P, et al. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment[J]. Appl Surf Sci, 2018, 435: 415-423. [45]Shen L, Cheng R, Yi M, et al. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving[J]. Nat Commun, 2022, 13(1): 500. [46]Lee J, Wang R, Bae T H. A comprehensive understanding of co-solvent effects on interfacial polymerization: Interaction with trimesoyl chloride[J]. J Membr Sci, 2019, 583: 70-80. [47]Wang Y, Chang H, Jiang S, et al. An efficient co-solvent tailoring interfacial polymerization for nanofiltration: Enhanced selectivity and mechanism[J]. J Membr Sci, 2023, 677: 121615. [48]Ye Y, Qiu N, Qiu Z, et al. Acetone extraction induced piperazine diffusion reaction for regulating thin film composite nanofiltration membrane[J]. J Membr Sci, 2024, 694: 122426. [49]Dong K, Liu X, Dong H, et al. Multiscale studies on ionic liquids[J]. Chem Rev, 2017, 117(10): 6636-6695. [50]Ben-Zvi A, Taqui Syed U, Ramon G Z, et al. Alternative materials for interfacial polymerization: recent approaches for greener membranes[J]. Green Chem, 2024, 26(11): 6237-6260. [51]Liu C, Yang J, Guo B, et al. Interfacial polymerization at the alkane/ionic liquid interface[J]. Angew Chem Int Edit, 2021, 60(26): 14636-14643. [52]Liang Y, Zhu Y, Liu C, et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 precision separation[J]. Nat Commun, 2020, 11(1): 2015. [53]Peng Q, Wang R, Zhao Z, et al. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane[J]. Nat Commun, 2024, 15(1): 2505. [54]Droudian A, Youn S K, Wehner L A, et al. Enhanced chemical separation by freestanding CNT-polyamide/imide nanofilm synthesized at the vapor-liquid interface[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19305-19310. [55]Paseta L, Echaide-Górriz C, Téllez C, et al. Vapor phase interfacial polymerization: A method to synthesize thin film composite membranes without using organic solvents[J]. Green Chem, 2021, 23(6): 2449-2456. [56]Li W, Yang Z, Yang W, et al. Vapor-phase polymerization of high-performance thin-film composite membranes for nanofiltration[J]. AlChE J, 2022, 68(2): e17517. [57]Ignacz G, Bader L, Beke A K, et al. Machine learning for the advancement of membrane science and technology: A critical review[J]. J Membr Sci, 2025, 713: 123256. [58]Dangayach R, Jeong N, Demirel E, et al. Machine learning-aided inverse design and discovery of novel polymeric materials for membrane separation[J]. Environ Sci Technol, 2025, 59(2): 993-1012. [59]Gao W, Wang G, Li J, et al. Insights into synthesis and optimization features of reverse osmosis membrane using machine learning[J]. Materials, 2025, 18(4): 840. [60]Li H, Xu S, Wang B, et al. A new insight into the effects of DMF solvent activation on the polyamide layers of nanofiltration membranes by molecular simulation[J]. J Membr Sci, 2025, 718: 123667. [61]Liu G, Wei M, Li D, et al. Understanding interfacial polymerization in the formation of polyamide RO membranes by molecular simulations[J]. Desalination, 2024, 586: 117869. [62]Geng H, Huo X, Jing Z, et al. Monitoring the process of interfacial polymerization for fabrication of polyamide reverse osmosis membrane via molecular simulation based on ππ interaction between surfactant and monomer[J]. J Membr Sci, 2025, 713: 123369. |
Service: |
【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号