Position:Home >> Abstract

Preparation and properties of superhydrophilic/underwater
superoleophobic TA/PVP/CNT membranes
Authors: QIU Chunxia, DONG Xin, LIU Yu, XU Yuanlu,FAN Xinfei, SONG Chengwen
Units: 1. Transport Planning and Research Institute Ministry of Transport, Beijing 100028, China; 2. School of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; 3. Guotou Caofeidian Port Co., Ltd., Tangshan 063200, China
KeyWords: superhydrophilic/underwater superoleophobic; carbon nanotubes; efficient oil-water mixtures separation
ClassificationCode:R136.3+3; TQ320.72+1
year,volume(issue):pagination: 2025,45(5):86-99

Abstract:
Oily wastewater discharged from various industrial activities poses a serious threat to the ecological environment and human health. Membrane separation is widely used in the treatment of oily wastewater due to its advantages of simple operation, low energy consumption and high selectivity. In this paper, carbon nanotube (CNT) was deposited on cellulose acetate (CA-CN) membranes to construct nanoscale pores, and tannic acid (TA) and polyvinylpyrrolidone (PVP) were introduced to form a hydrogel layer, preparing a nanorough-structured superhydrophilic/underwater superoleophobic TA/PVP/CNT composite membrane. This composite membrane exhibited excellent superhydrophilic/underwater superoleophobic properties, capable of efficiently separating various oil-water mixtures and oil-in-water emulsions stabilized by surfactants (such as n-hexane, edible oil, cetane, liquid paraffin, isooctane), with a separation efficiency of up to 99.61%. Furthermore, after 10 cycles of oil-in-water emulsion filtration, the separation performance of this composite membrane remained at a high level, which indicates that the TA/PVP/CNT composite membrane has good stability and anti-pollution ability during long-term use. The TA/PVP/CNT composite membrane demonstrates superior separation performance and a green and environmentally friendly preparation method, indicating broad application prospects in the field of oily wastewater treatment. 

Funds:
国家重点研发计划项目(2023YFC3108300)

AuthorIntro:
邱春霞(1979-),女,辽宁东港人,硕士研究生,主要研究方向为油污水膜分离技术

Reference:
[1]Zhang N, Qi Y, Zhang Y, et al. A review on oil/water mixture separation material[J]. Ind Eng Chem Res, 2020, 59(33): 14546-14568.
[2]Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. J Mater Chem A, 2017, 5(31): 16025-16058.
[3]Tapdigov S Z, Ahmad F F, Hamidov N N, et al. Increase in the efficiency of water shut-off with the application of polyethylenpolyamine added cement[J]. Chem Probl, 2022, 20(1): 59-67.
[4]Wang Y, Liu X, Lian M, et al. Continuous fabrication of polymer microfiber bundles with interconnected microchannels for oil/water separation[J]. Appl Mater Today, 2017, 9: 77-81.
[5]刘犇,叶向东,郗长青,等. 一种高机械耐久性油水分离网的制备及性能[J]. 塑料工业, 2023, 51(7): 156-162.
[6]Miao W, Jiao D, Wang C, et al. Ethanol-induced one-step fabrication of superhydrophobic-superoleophilic poly(vinylidene fluoride) membrane for efficient oil/water emulsions separation[J]. J Water Process Eng, 2020, 34: 101121.
[7]Li M, Li Y, Chang K, et al. The poly(vinyl alcohol-co-ethylene) nanofiber/silica coated composite membranes for oil/water and oil-in-water emulsion separation[J]. Com Commun, 2018, 7: 69-73.
[8]Deng Y ,Peng C ,Dai M , et al. Recent development of super-wettable materials and their applications in oil-water separation[J]. J Clean Prod, 2020, 26: 121624.
[9]Kang  W,Guo L,Fan H,et al.Flocculation,coalescence and migration of dispersed phase droplets and oil-waterseparation in heavy oil emulsion. J Petrol Sci Eng,2012,81:177-181.
[10]段晓博,杨彪. 聚合物表面超亲水改性进展[J]. 塑料, 2014, 43(3): 114-117.
[11]Liu Y, Zhao X, Zhang C, et al. A hydrophilic lignin-based carbon fiber sizing agent assembled with CNTs towards strengthening epoxy resin[J]. Chem Eng J, 2023, 476: 146624.
[12]Sianipar M, Kim S H, Khoiruddin K, et al. Functionalized carbon nanotube (CNT) membrane: progress and challenges[J]. RSC Adv, 2017, 7(81): 51175-51198.
[13]朱晓宇,梁雨苏,李文泽. 碳纳米管增强铜铬基复合材料的制备及其性能研究[J]. 沈阳化工大学学报, 2023, 37(3): 193-199.
[14]Mavukkandy M O, Zaib Q, Arafat H A. CNT/PVP blend PVDF membranes for the removal of organic pollutants from simulated treated wastewater effluent[J]. J Environ Chem Eng, 2018, 6(5): 6733-6740.
[15]Qu S, Jiang X, Li Q, et al. Developing strong and tough carbon nanotube films by a proper dispersing strategy and enhanced interfacial interactions[J]. Carbon, 2019, 149: 117-124.
[16]Bai Z, Jia K, Zhang S, et al. Surface segregation-induced superwetting separation membranes with hierarchical surface structures and internalized gel networks[J]. Adv Funct Mater, 2022, 32(45): 2204612.
[17]Nam H G, Nam M G, Yoo P J, et al. Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid[J]. Soft Matter, 2019, 15(4): 785-791.
[18]Zhu L, Zhang J, He F, et al. (TA-APTES)Plus: A rapid, green and universal coating for membrane modification toward oil-in-water emulsion separation[J]. J Membr Sci, 2023, 680: 121741.
[19]Lee S Y, Kim J T, Chathuranga K, et al. Tannic-acid-enriched poly(vinyl alcohol) nanofibrous membrane as a UV-shie iding and antibacterial face mask filter material[J]. ACS Appl Mater Interfaces, 2023,15(16): 20435-20443.
[20]Sun F, Li T T, Zhang X, et al. In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation[J]. Chemosphere, 2020, 254: 126873.
[21]何建川,张波,邵阳. 傅里叶变换红外光谱分析[J]. 中国临床医学, 2011, 18(2): 147-149.
[22]Fan H, Wang L, Feng X, et al. Supramolecular hydrogel formation based on tannic acid[J]. Macromolecules, 2017, 50(2): 666-676.
[23]Yang X, He Y, Zeng G, et al. Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation[J]. Chem Eng J, 2017, 321: 245-256.
[24]Xing R, Wang W, Jiao T, et al. Bioinspired polydopamine sheathed nanofibers containing carboxylate graphene oxide nanosheet for high-efficient dyes scavenger[J]. ACS Sustainable Chem Eng, 2017, 5(6): 4948-4956.
[25]Wang G, Zhang J, Lin S, et al. Environmentally friendly nanocomposites based on cellulose nanocrystals and polydopamine for rapid removal of organic dyes in aqueous solution[J]. Cellulose, 2020, 27(4): 2085-2097.
[26]Xu Y, Zhu Y, Song C, et al. Bioinspired SiO2/PDA/PTFE membrane with high corrosion-resistance for long-term efficient oil/water separation[J]. Polymer, 2023, 281: 126143.
[27]Zhao X, Cheng L, Jia N, et al. Polyphenol-metal manipulated nanohybridization of CNT membranes with FeOOH nanorods for high-flux, antifouling and self-cleaning oil/water separation[J]. J Membr Sci, 2020, 600: 117857.
[28]Yang Z, Fang W, Wang Z, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. J Membr Sci, 2021, 620: 118862.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号