Position:Home >> Abstract

Investigation of blending preparation and anti-fouling
mechanisms of MXene/PVDF composite membranes
Authors: YANG Haochuan, WEI Jiaqi, YANG Linlin, ZHANG Jie, CHENG Chenhong,ZHANG Yuanyuan, JIANG Minmin, WEI Qiaoyan, ZHENG Junjian
Units: 1. College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; 2. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; 3. School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China; 4. School of Environmental Science and Engineering, South University of Science and Technology, Shenzhen 518055, China
KeyWords: PVDF membrane; MXene; membrane modification; anti-fouling performance; XDLVO
ClassificationCode:X703; TQ028
year,volume(issue):pagination: 2025,45(5):120-132

Abstract:
?Conventional polyvinylidene fluoride (PVDF) membranes exhibit strong hydrophobicity and poor anti-fouling performance, which are critical limitations for their applications in water filtration fields including wastewater treatment, seawater desalination and drinking water purification. In this study,  MXene/PVDF composite membranes using a NIPS(non-solvent induced phase separation) method by blending MXene with PVDF were  prepared, and  the impact of different MXene loadings on the membrane’s anti-fouling properties was systematically investigated. The results demonstrated significant improvements in the physicochemical properties of the composite membranes compared to pristine PVDF membranes, including pore size, porosity, contact angle and Zeta potential. When the MXene loading was 1.5 g (mass fraction of 7.0%, dosage per unit membrane area was 11.54 g/m2), in comparison to the pristine PVDF membrane, water flux increased from 10.7 L/(m2·h) to 45.3 L/(m2·h) for the composite membrane, while the flux recovery rate improved markedly from 60.9% to 80.8%. XDLVO theory analysis indicated that the energy barrier for the pristine PVDF membrane was 0.58 KT, significantly lower than that of the composite membrane  MD5 (0.78 KT), suggesting a stronger repulsion tendency towards pollutants in the composite membrane. Long-term experimental results showed that the operational cycle of the composite membrane MD5 in an anaerobic-aerobic membrane bioreactor could reach up to 35 d, approximately 3.9 times longer than that of the pristine PVDF membrane (9 d). These findings indicate the excellent practical application potential of the MXene/PVDF composite membranes. 

Funds:
广西自然科学基金-青年科学基金项目(2023GXNSFBA026324); 广东省自然科学基金杰出青年项目(2022A1515110705)

AuthorIntro:
杨昊川(1998-),男,四川广安人,硕士研究生,研究方向为膜法污水处理与资源化技术;魏嘉琪(1998-),女,黑龙江哈尔滨人,博士研究生,研究方向为膜法污水处理与资源化技术

Reference:
[1]Zhang T, Guo X, Solomon B, et al. A hydrophobic-hydrophilic MXene/PVDF composite hollow fiber membrane with enhanced antifouling properties for seawater desalination[J]. J Membr Sci, 2022, 644: 120146.
[2]Huh Y, Yu S, Huh J, et al. Sustainable superhydrophobic PVDF-grafted cellulose membrane for oil/water separation[J]. ACS Appl Polym Mater, 2022, 4: 8441-8449.
[3]Hudaib B, Abu-Zurayk R, Waleed H, et al. Fabrication of a novel (PVDF/MWCNT/polypyrrole) antifouling high flux ultrafiltration membrane for crude oil wastewater treatment[J]. Membranes, 2022, 12: 751.
[4]Yu H, Gu L, Wu S F, et al. Hydrothermal carbon nanospheres assisted-fabrication of PVDF ultrafiltration membranes with improved hydrophilicity and antifouling performance[J]. Sep Purif Technol, 2020, 247: 116889.
[5]Gu J, Xu S D, Lu X L, et al. Study on the membrane formation mechanism of PVDF/PVDF-CTFE blends[J]. J Taiwan Inst Chem E, 2023, 142: 104655.
[6]程继锋, 蒋团辉, 詹晓梅, 等. 超亲水聚偏氟乙烯中空纤维膜的制备及性能[J]. 高等学校化学学报, 2020, 41: 358-364.
[7]Zhang G, Bai R, Shen S, et al. Hydrophilic and photo-crosslinkable diblock copolymers employed for robust antifouling membrane coatings[J]. Appl Surf Sci, 2019, 464: 429-439.
[8]Zhao X, Lan Y, Yang K, et al. Antifouling modification of PVDF membranes via in situ mixed-charge copolymerization and TiO2 mineralization[J]. Appl Surf Sci, 2020, 525: 146564.
[9]Ma C, Hu J, Sun W J, et al. Graphene oxide-polyethylene glycol incorporated PVDF nanocomposite ultrafiltration membrane with enhanced hydrophilicity, permeability, and antifouling performance[J]. Chemosphere, 2020, 253: 126649.
[10]Fahrina A, Yusuf M, Muchtar S, et al. Development of anti-microbial polyvinylidene fluoride (PVDF) membrane using bio-based ginger extract-silica nanoparticles (GE-SiNPs) for bovine serum albumin (BSA) filtration[J]. J Taiwan Inst Chem E, 2021, 125: 323-331.
[11]Abood T, Shabeeb K, Alzubaydi A, et al. Novel MXene/PVDF nanocomposite ultrafiltration membranes for optimized eriochrome black T (azo dye) removal[J]. Desalin Water Treat, 2024, 318: 100311.
[12]Lyu S, Chang H, Zhang L, et al. High specific surface area MXene/SWCNT/cellulose nanofiber aerogel film as an electrode for flexible supercapacitors[J]. Compos Part B-Eng, 2023, 264: 110888. 
[13]Mu X, Chen L, Qu N, et al. MXene/Ag3PO4 modified PVDF composite membranes for efficient interfacial evaporation and photodegradation[J]. J Environ Chem Eng, 2024, 12(3): 112869.
[14]Fitzpatrick J, Bera S, Inman A, et al. Record efficiency of β-phase PVDF-MXene composites in thin-film dielectric capacitors[J]. Adv Mater, 2025, 37(12): 2419088.
[15]Wang F, Han S, Zhang Y, et al. Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets[J].Commun Chem, 2022, 5(1): 65.
[16]Liu B, Zhang X, Li B, et al. Interfacial dielectric enhancement in MXene/PVDF nanocomposites via hydrogen bond-induced dipole modulation[J]. Appl Surf Sci, 2025, 695: 162837.
[17]Subasi Y, Cicek B. Recent advances in hydrophilic modification of PVDF ultrafiltration membranes - a review: part Ⅱ[J]. Membr Technol, 2017, 2017(11): 5-11.
[18]Chen S R, Wang T, Zhuo X Y, et al. PVDF mixed matrix membranes by incorporation of ionic liquid and MXene for enhancing permeation and antifouling performance[J]. J Environ Chem Eng, 2022, 10: 108027.
[19]Razmjou A, Mansouri J, Chen V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes[J]. J Membr Sci, 2011, 378(1/2): 73-84.
[20]Guo Z J, Lu W B, Zhang Y, et al. MXene fillers and silver flakes filled epoxy resin for new hybrid conductive adhesives[J]. Ceram Int, 2023, 49(8): 12054-12060.
[21]Werber J R, Osuji C O, Elimelech M.Materials for next-generation desalination and water purification membranes[J]. Nat Rev Mater, 2016, 1(5): 16018.
[22]Ostovar A, Tarkhani M, Mousavi S A, et al. Surface modification of GO/PVDF composite membrane by MXene/protonated g-C3N4 nanosheets hybrids with improved dye separation and antifouling properties[J]. Polym Eng Sci, 2024, 64(2): 565-576.
[23]Zhao X Z, Liu C K. Irreversible fouling control of PVDF ultrafiltration membrane with "fouled surface" for mimetic sewage treatment[J]. RSC Adv, 2016, 6(96): 94184-94192.
[24]Gao F, Wang J, Zhang H W, et al. Effects of sodium hypochlorite on structural/surface characteristics, filtration performance and fouling behaviors of PVDF membranes[J]. J Membr Sci, 2016, 519: 22-31.
[25]Levin Y K. Characteristics of an electrical double layer of bulk nanobubles in water[J]. Colloid J, 2023, 85(3): 418-422.
[26]Wu H H, Shen F, Wang J F, et al. Membrane fouling in vacuum membrane distillation for ionic liquid recycling: Interaction energy analysis with the XDLVO approach[J]. J Membr Sci, 2018, 550: 436-447.
[27]Guo J R, Zhang Y, Chen F H, et al. A Membrane with strong resistance to organic and biological fouling using graphene oxide and D-tyrosine as modifiers[J]. Membranes, 2022, 12: 486.
[28]Soomro R, Zhang P, Fan B, et al. Progression in the oxidation stability of MXenes[J]. Nano-Micro Lett, 2023, 15(7): 306-323.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号