Position:Home >> Abstract

Research on the process of concentrating apple juice
using forward osmosis technology
Authors: XUE Jian, JIN Limei, MENG Lingwei, SUN Qingrui, SUI Shiyou, PU Nana, ZHANG Jianqiang
Units: 1. College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; 2. Agri-Food Processing and Engineering Technology Research Center of Heilongjiang Province, Daqing163319, China; 3. National Coarse Cereals Engineering Research Center, Daqing 163319, China; 4. Library,Heilongjiang Bayi Agricultural University, Daqing 163319, China
KeyWords: forward osmosis membrane; zwitterionic; apple juice; concentration; membrane cleaning
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2025,45(5):143-152

Abstract:
Forward osmosis (FO) technology has the advantages of low energy consumption and effective retention of nutrients and aroma in fruit juice. In this article, a Box-Behnken response surface experiment was conducted to investigate the effects of draw solution type and composition, feed solution flow rate, and temperature on membrane flux and reverse solute diffusion flux during FO concentration based on single-factor experiments with apple juice as raw material. Process parameters were optimized, and the effects of different chemical cleaning methods on membrane flux recovery rate were compared. The results showed that when apple juice was used as the feed solution, the optimal FO concentration process was as follows: a mixed solution of glucose and potassium citrate (volume ratio 3∶1) was used as the draw solution, the feed solution flow rate was 12 L/h, and the temperature was 27 ℃. At this time, the membrane flux was 6.938 L/(m2·h), and the reverse solute diffusion flux was 0.235 mol/(m2·h). Chemical cleaning with NaOH, NaClO and citric acid had good effects, among which 5% (mass fraction) citric acid had the best cleaning effect on the apple juice-contaminated membrane, with a membrane flux recovery rate of 83.67%. This article aims to provide technical references for the application of FO technology in the field of fruit juice concentration. 

Funds:
黑龙江省自然科学基金联合引导项目(LH2023B019)

AuthorIntro:
薛健(1999-),女,硕士研究生,研究方向为农产品加工及贮藏

Reference:
[1]Trishitman D, Negi P S, Rastogi N K. Concentration of pomegranate juice by forward osmosis or thermal evaporation and its shelf-life kinetic studies [J]. Food Chem, 2023, 399: 133972.
[2]Roozitalab A, Raisi A, Aroujalian A. A comparative study on pomegranate juice concentration by osmotic distillation and thermal evaporation processes[J]. Korean J Chem Eng, 2019, 36: 1474-1481.
[3]秦贯丰,原姣姣. 苹果汁冷冻浓缩与真空蒸发浓缩的对比实验研究[C]. 中国食品科学技术学会第十五届年会论文集, 2018:311-312.
[4]白小鸣,王华,曾小峰,等.果汁浓缩技术概述[J].食品与发酵工业,2014,40(7):131-135.
[5]Ruby-Figueroa R, Morelli R, Conidi C,et al. Red fruit juice concentration by osmotic distillation: Optimization of operating conditions by response surface methodology [J]. Membranes, 2023, 13(5): 496.
[6]何靖柳, 张秋霞, 刘杨,等. 浓缩果汁浓缩方法的研究现状及展望[J]. 南方农机, 2021, 52(24): 20-22.
[7]Chu H, Zhang Z, Zhong H, et al. Athermal concentration of blueberry juice by forward osmosis: Food additives as draw solution [J]. Membranes, 2022, 12(8): 808.
[8]Destani F, Naccarato A, Tagarelli A, et al. Recovery of aromatics from orange juice evaporator condensate streams by reverse osmosis[J]. Membranes, 2020, 10(5): 92.
[9]Arend G D, Adorno W T, Rezzadori K, et al. Concentration of phenolic compounds from strawberry (Fragaria × ananassa Duch.) juice by nanofiltration membrane[J]. J Food Eng, 2017, 201:36-41.
[10]郭智, 张新妙, 章晨林,等. 膜蒸馏过程强化及优化技术研究进展[J]. 化工进展, 2016, 35(4): 981-987.
[11]李海军,张捍民,杨凤林.对称正渗透膜制备及膜性能表征[J].环境科学与技术,2013,36(12):11-14.
[12]徐伟, 孙建国, 陈敏, 等. 采用正渗透技术浓缩番茄汁[J]. 食品与发酵工业, 2013, 39(12): 128-130. 
[13]Ravichandran R, Ekambaram N. Assessment of factors influencing the concentration of betacyanin from Opuntia ficus-indica using forward osmosis: Concentration of betacyanin using forward osmosis[J]. J Food Sci Technol, 2018, 55(7): 2361-2369.
[14]Vani B, Kalyani S, Pabba M. et al. Forward osmosis aided concentration of lycopene carotenoid from watermelon juice[J]. J Chem Technol Biotechnol, 2021, 96(7): 1960-1973.
[15]Milczarek R R, Sedej I. Aroma profiling of forward-osmosis watermelon juice concentrate and comparison to fresh fruit and thermal concentrate [J]. Lwt-Food Sci Technol, 2021, 151: 112147.
[16]张梦轲,王越,刘艳秋,等.操作条件对正渗透分离性能的影响[J].化学工业与工程,2018,35(6):32-40.
[17]Chanukya B, Rastogi N K. Ultrasound assisted forward osmosis concentration of fruit juice and natural colorant[J]. Ultrason Sonochem, 2017, 34:426-435.
[18]Kim D I, Gwak G, Zhan M. et al. Sustainable dewatering of grapefruit juice through forward osmosis: Improving membrane performance, fouling control, and product quality[J]. J Membr Sci, 2019, 578:53-60.
[19]任宋萍. 基于正渗透技术的苹果汁非热浓缩研究[D]. 西安:西北农林科技大学, 2019.
[20]Garcia-Castello E M, Mccutcheon J R. Dewatering press liquor derived from orange production by forward osmosis[J]. J Membr Sci,2011, 372(1/2): 97-101.
[21]Kim D I, Choi J, Hong S. Evaluation on suitability of osmotic dewatering through forward osmosis (FO) for xylose concentration[J]. Sep Purif Technol, 2018, 191: 225-232.
[22]李洁,王军,白羽,等.温度对正渗透工艺性能的影响[J].环境工程学报,2014,8(10):4168-4174.
[23]Wang H, Zhang Y, Ren S, et al. Athermal concentration of apple juice by forward osmosis: Process performance and membrane fouling propensity[J]. Chem Eng Res Des, 2022, 177:569-577.
[24]Mondal D, Nataraj S K, Reddy A V R, et al. Four-fold concentration of sucrose in sugarcane juice through energy efficient forward osmosis using sea bittern as draw solution[J]. Rsc Adv, 2015, 5(23): 17872-17878.
[25]Zambra C,Romero J,Pino L, et al.Concentration of cranberry juice by osmotic distillation process[J].J Food Eng,2015,144: 58-65.
[26]Bhattacharjee C, Saxena V K, Dutta S. Fruit juice processing using membrane technology: A review[J]. Innovative Food Sci Emerg Technol, 2017, 43: 136-153.
[27]Leng C, Sun S, Zhang K, et al. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ[J]. Acta Biomater, 2016, 40:6-15.
[28]Yassari M, Shakeri A, Karami P, et al. Hydrophilic antifouling thin-film nanocomposite forward osmosis membranes: Effect of zwitterion-functionalized carbon nanofiber modification[J]. Ind Eng Chem Res, 2023, 63(1): 566-578.
[29]闫树鹏,张冲,吕华.两性离子聚合物的研究进展[J].功能高分子学报,2020,33(1):1-14.
[30]隋世有,金丽梅,朱成成,等.正渗透膜污染的影响因素及清洗效果研究[J].食品工业科技,2022,43(10):64-72.
[31]徐梦思, 马广翔, 易夏文, 等. 内嵌碳纳米管层的导电正渗透膜制备及其缓解有机污染的研究[J]. 膜科学与技术, 2021, 41(3): 8-15. 
[32]杨晓璇.抗生素分离与藻酸盐浓缩脱水正渗透实验研究[D].北京:北京建筑大学,2020.
[33]吴思邈,孟姣,祝玲玲,等.利用模拟苹果汁体系探究正渗透浓缩技术[J].食品与发酵工业,2022,48(1):203-210.
[34]薛健,金丽梅,孙清瑞,等.正渗透技术在浓缩果汁中的研究现状及进展[J/OL].食品工业科技,1-18[2025-03-16]. https://doi.org/10.13386/j.issn1002-0306.2024090211.
[35]Wenten I G, Khoiruddin K, Reynard R, et al. Advancement of forward osmosis (FO) membrane for fruit juice concentration[J]. J Food Eng, 2021, 290: 110216.
[36]边丽霞,方彦彦,王晓琳.正渗透过程中水与溶质的传递现象[J].化工学报,2014,65(7):2813-2820.
[37]吴思邈,陈建明,王爱廉,等.正渗透技术浓缩苹果汁过程中反向溶质扩散的研究[J].食品工业科技,2021,42(24):172-180.
[38]Hawari A H, Kamal N, Altaee A. Combined influence of temperature and flow rate of feeds on the performance of forward osmosis[J]. Desalination, 2016, 398: 98-105.
[39]肖萍,邹瑜斌,段淑璇,等.某自来水厂超滤膜污染物成分及化学清洗效果案例分析[J].环境工程学报,2020,14(5):1404-1411.
[40]缪畅,邱运仁.NF-RO组合膜处理大豆乳清废水[J].中南大学学报(自然科学版),2010,41(4):1623-1627.
[41]李臻.柠檬酸替代EDTA清洗对反渗透膜海藻酸钙污染的研究[J].安全、健康和环境,2022,22(7):34-37,48.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号