|
Study on the influence of ultrafiltration membrane pore size on membrane fouling behavior during the concentration of livestock and poultry manure biogas slurry |
| Authors: CAO Qi, LYU Jingmiao, CUI Wenjing, QI Chuanren, LI Yun, HAN Xianjie, LUO Wenhai |
| Units: 1. College of Resources and Environment, China Agricultural University, Beijing 100193, China; 2. College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; 3. College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China |
| KeyWords: ultrafiltration; membrane fouling; biogas slurry; pore size |
| ClassificationCode:TQ028; X713 |
| year,volume(issue):pagination: 2025,45(5):181-190 |
|
Abstract: |
| Ultrafiltration (UF) is a crucial unit in the resource-oriented membrane separation treatment of biogas slurry, as it can efficiently remove suspended solids, colloids and other substances. Most studies have focused on the relationship between membrane fouling and membrane flux, while there is a lack of analysis on membrane fouling mechanisms. To further meet the needs of engineering applications, this study conducted concentration experiments using UF membranes with molecular weight cut-off (MWCO) of 30 000, 50 000, 100 000 and 500 000, taking biogas slurry from livestock and poultry farms as the research object. The effects of membrane pore size on nutrient rejection efficiency, membrane flux variation patterns and fouling mechanisms were systematically analyzed. The results showed that UF membranes with different pore size could all efficiently retain COD in the biogas slurry, with a rejection rate exceeding 80%. However, their retention performance for total nitrogen (TN), total phosphorus (TP) and total potassium (TK) was generally poor, ranging from 24.0% to 27.0%, 59.0% to 69.0%, and 9.0% to 9.5% respectively. During the membrane concentration process where the volume of biogas slurry was concentrated 5 times, the water flux exhibited a pattern of a rapid initial decline, followed by a stable state, and a final decline again. The main fouling mechanism was organic-inorganic composite cake layer fouling, accounting for more than 96% of the total fouling resistance, while adsorption fouling accounted for less than 3% of the total resistance. Moreover, the adsorption fouling showed an increasing trend as the membrane pore size increased, with inter-pore adsorption being the main cause.During enhanced water recovery, the 100 000 membrane demonstrated superior flux sustainability compared to 500 000, 50 000 and 30 000 membranes. Considering the integrated factors of stable water flux, nutrient retention and membrane fouling propensity, the optimal molecular weight cut-off of UF membrane determined for biogas slurry concentration was 100 000. |
|
Funds: |
| “农业废弃物协同高效处理低碳资源化利用关键技术装备研发及集成示范”项目(2023YFD1701702); 山东省自然科学基金(ZR2022QD038); 山东省现代农业产业技术体系(SDAIT-08-09) |
|
AuthorIntro: |
| 曹琦(2001-),女,山东烟台人,研究方向为废弃物资源化处理与利用 |
|
Reference: |
|
[1]季彬, 彭轶楠, 叶泽, 等. 畜禽粪污污染物无害化处理技术研究进展[J]. 中国畜禽种业, 2021, 17(7):47-48. [2]国务院第二次全国污染源普查领导小组办公室.第二次全国污染源普查公报[J].环境保护,2020,48(18):8-10. [3]肖华, 徐杏, 周昕, 等. 膜技术在沼气工程沼液减量化处理中的应用[J]. 农业工程学报, 2020, 36(14): 226-236. [4]魏玉珍, 孙小妹, 褚润, 等. 沼液膜浓缩处理工艺工作参数研究[J]. 中国沼气, 2020, 38(2): 60-65. [5]陆佳, 刘伟, 王欣, 等. 超滤膜浓缩处理沼液实验研究[J]. 应用能源技术, 2016,(8): 49-53. [6]杨顾坤, 朱洪光, 沈根祥, 等. 沼液板式超滤膜预处理试验研究[J]. 农业环境科学学报, 2020, 39(7): 1643-1648. [7]Konieczny K, Kwiecinska A, Gworek B. The recovery of water from slurry produced in high density livestock arming with the use of membrane processes[J]. Sep Purif Technol, 2011, 80(3): 490-498. [8]李汪晟. 畜禽养殖沼液浓缩液液肥化技术研究[D]. 长沙:湖南农业大学, 2017. [9]Pan F, Zhu H, Sun J, et al. Recovery of organic nutrients from biogas slurry using decolorized ultra filtration membrane coMPared with nanofiltration membrane[J]. J Environ Chem Eng, 2024, 12(5):113421. [10]Cui W, Li S, Xie M, et al. Performance of coagulant-aided biomass filtration to protect ultrafiltration from membrane fouling in biogas slurry concentration[J]. Environ Technol Innov, 2022, 28:102659. [11]Huang R, Pan H, Zheng X, et al. Effect of membrane pore size on membrane fouling of corundum ceramic membrane in MBR[J].Int J Environ Res Public Health, 2023, 20(5):4558. [12]黄生林,吴健,陈卫华,等.餐厨垃圾沼液的超滤膜错流过滤数学模型[J].工业水处理,2023,43(9):138-143. [13]李冰,吴迪,石岩,等.膜耦合技术对沼液浓缩及净水效果的影响[J].工业水处理,2024,44(5):156-163. [14]宫徽, 金正宇, 王凯军. 混凝/膜过滤过程中泥饼层对膜污染的影响研究[J]. 中国给水排水, 2014, 30(11): 81-85. [15]Li M, Zhao Y, Zhou S, et al. Resistance analysis for ceramic membrane microfiltration of raw soy sauce[J]. J Membr Sci, 2007, 299(2): 122-129. [16]孙伟光. 超滤膜特征有机污染物识别及膜污染控制研究[D]. 哈尔滨:哈尔滨工业大学, 2018. [17]宋先庆, 周杰, 刘飞, 等. 基于小孔径PVDF内衬膜A/O-MBR膜污染分析[J]. 水处理技术, 2020, 46(1): 38-42. [18]祁步凡. 猪场沼液膜浓缩制肥及其对小白菜的肥效与安全性评价[D]. 成都:成都大学, 2020. [19]孟晓荣, 陈嘉智, 杨胜, 等. 二级出水典型污染物超滤膜污染行为的分子动力学模拟研究[J]. 环境化学, 2020, 39(2): 397-408. [20]谭学军, 王磊, 王逸贤, 等. 城市污水处理厂污泥厌氧消化沼液特性研究[J]. 给水排水, 2020, 56(S2): 237-241. [21]何飞阳, 向文毓, 陈舒琦, 等. 电渗析选择性分离电解锰废水中的阳离子[J]. 中国环境科学, 2022, 42(3): 1202-1208. [22]李涛. 土壤中离子的电迁移机制及孔隙结构因素的影响[D]. 成都:西南交通大学, 2022. [23]李果,陈玉成, 简维佳, 等. 臭氧氧化对奶牛场沼液中磷形态转化的影响[J]. 农业环境科学学报, 2019, 38(2): 451-457. [24]Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J].Sep Purif Technol, 2012, 86: 119-126. [25]Zhang X, Zhou Y, Zhao F, et al. Anti-fouling mechanism of ultrafiltration membranes modified by graphene oxide with different charged groups under simulated seawater conditions[J]. J Membr Sci, 2023, 674:121483. [26]Liu X, Zhao S, Zhang X, et al. Application of sodium alginate as a coagulant aid for mitigating membrane fouling induced by humic acid in dead-end ultrafiltration process[J]. Sep Purif Technol, 2020, 253:117421. [27]Yu R, Yang Y, Zhou Z, et al. Role of visible light photocatalysis in alleviation and mechanism transformation of ultrafiltration membrane fouling caused by natural organic matter[J]. Sep Purif Technol, 2023, 324: 124409. [28]邓璐遥, 李少路, 秦一文, 等. 抗污染薄层复合聚酰胺膜的结构设计及改性策略[J]. 化学进展, 2020, 32(12): 1895-1907. [29]朱洪光, 王旦一. 混凝预处理厌氧发酵液对超滤膜通量的影响[J]. 农业机械学报, 2012, 43(4): 93-99. [30]Yu W, Liu M, Zhang X, et al. Effect of pre-coagulation using different aluminum species on crystallization of cake layer and membrane fouling[J]. npj Clean Water, 2019, 2(1):2877-2884. [31]李彦泉,韩超,杨迷,等.高氯离子高硬度工业污水中MBR膜组器腐蚀与清洗方式[J].化工设计通讯,2023,49(8):162-164. [32]刘建路, 岳茂文, 陈晓宇, 等. 反渗透海水淡化中无机结垢的现象及实时监测[J]. 工业水处理, 2021, 41(7): 25-33. [33]Chen Y, Teng J, Liao B, et al. Molecular insights into the iMPacts of iron(Ⅲ) ions on membrane fouling by alginate[J]. Chemosphere, 2020, 242: 125232. [34]王芳, 李之鹏, 徐仲, 等. AF-MBR处理海水养殖废水性能及膜污染特性[J]. 中国环境科学, 2018, 38(5): 1760-1766. [35]Li Y, Xie X, Yin R, et al. Effects of different draw solutions on biogas slurry concentration in forward osmosis membrane: Performance and membrane fouling[J]. Membranes, 2022: 12(5):476. [36]Li Y, Xu Z, Xie M, et al. Resource recovery from digested manure centrate: Comparison between conventional and aquaporin thin-film composite forward osmosis membranes[J]. J Membr Sci, 2020, 593: 117436. [37]李梦晨, 肖康, 黄霞. 基于红外光谱聚类分析的纳滤膜污染动态发展行为研究[J]. 光谱学与光谱分析, 2019, 39(2): 421-427. [38]李荧, 史文悦, 张翠翠, 等. 基于倒置A2O-MBR工艺处理综合污水中的膜污染分析[J]. 广东化工, 2021, 48(18): 114-116. [39]李玉晓, 查甫更, 徐娟, 等. 超滤膜污染及其预氧化处理技术的研究进展[J]. 环境保护前沿, 2025, 15(1): 1-6. [40]李赟. 基于膜浓缩的沼液混凝和生物基过滤联合预处理效果与评价[D]. 北京:中国农业大学, 2020. [41]刘冲, 吕晓龙, 武春瑞, 等. 关于超滤膜临界运行通量的探讨[J]. 膜科学与技术, 2017, 37(1): 23-26. |
|
Service: |
| 【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号