|
Study on the performance of polyvinylidene fluoride ultrafiltration membranes regulated by blending modification and surface segregation process |
| Authors: HE Qinya, WENG Xiaodan, ZHANG Xijian |
| Units: Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122,China |
| KeyWords: polyvinylidene fluoride; cellulose acetate; blending modification; surface segregation; pore-size regulation |
| ClassificationCode:TQ028.3 |
| year,volume(issue):pagination: 2025,45(6):45-52 |
|
Abstract: |
|
?Polyvinylidene fluoride (PVDF) ultrafiltration membranes often exhibit limited permeation and rejection due to intrinsic hydrophobicity and dense pore architecture. This study introduced cellulose acetate (CA) into PVDF via blending modification and surface segregation using non-solvent induced phase separation (NIPS). Tuning CA content and coagulation bath temperature enabled precise control of pore structure, porosity and surface hydrophilicity. Under casting solution of 12% (mass fraction, the following was the same) PVDF, 3% CA and 85% N,N-dimethylacetamide (DMAc), lowering coagulation bath temperature from 45 °C to 25 °C increased surface oxygen content from 14.2% to 16.0%, mean pore size from 28.1 nm to 35.0 nm, pore density from 180.1 μm-2 to 252.6 μm-2 and reduced initial contact angle from 85.1° to 72.0°. Correspondingly, pure water permeance increased to 24 897.1 L/(m2·h·MPa), nearly 33-fold higher than that of pristine PVDF. |
|
Funds: |
| 国家重点研发计划(2022YFC3202900) |
|
AuthorIntro: |
| 何钦雅(1985-),女,浙江金华人,研究方向为膜技术相关水处理工艺. |
|
Reference: |
|
[1]Almanassra I W, Jaber L, Manawi Y, et al. Recent advances in 2D materials for improved performance and antifouling characteristics of ultrafiltration membranes[J]. Chem Eng J, 2024, 488: 151029. [2]杨权, 裴洪昌, 李贤辉. 膜技术分离尿液中尿素的研究进展[J]. 膜科学与技术, 2025, 45(1): 197-206. [3]王新艳, 张伟政, 李海峰, 等. g-C3N4改性PVDF-CTFE混合基质超滤膜的制备与性能[J]. 膜科学与技术, 2023, 43(1): 99-108. [4]张浩然, 祝振洲, 陈旭,等. 基于刺激响应机制的抗污染膜研究进展[J]. 膜科学与技术, 2023, 43(3): 190-197. [5]王茜蕙, 刘俊良, 张干伟, 等. DCMC/PEI涂层改性PVDF超滤膜的分离和抗污染性能研究[J]. 膜科学与技术, 2024, 44(5): 57-66. [6]Wang X, Xu J, Li L, et al. Thiourea grafted PVDF affinity membrane with narrow pore size distribution for Au(Ⅲ) adsorption: Preparation, characterization, performance investigation and modeling[J]. Chem Eng J, 2017, 314: 700-713. [7]Zhao X, Xiao Z, Qiao Z, et al. Insights into the assembly process and properties of regenerated cellulose beads prepared in alkali/urea aqueous solutions[J]. Carbohydr Polym, 2024, 338: 122184. [8]武家鑫, 付维贵, 刘建超, 等. 基于 Passerini反应改性PVDF超滤膜及其抗蛋白质污染性能[J]. 膜科学与技术, 2022, 42(3): 68-77. [9]Wu Z, Tian J, Wu L, et al. A hydrophilic coating capable of withstanding acid and alkali to modify PVDF membrane[J]. J Water Process Eng, 2022, 45: 102519. [10]Liu D, Zhu J, Qiu M, et al. Antifouling performance of poly(lysine methacrylamide)-grafted PVDF microfiltration membrane for solute separation[J]. Sep Purif Technol, 2016, 171: 1-10. [11]Zhou Y, Xi D L. Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30)[J]. Desalination, 2008, 223(1/2/3): 438-447. [12]Ji D, Gao Y, Wang W, et al. Green preparation of PVDF hollow fiber membranes with multiple pore structure via melt spinning method for oil/water separation[J]. J Environ Chem Eng, 2022, 10(5): 108337. [13]Liu Y, Huang J, Guo Z. TiO2 deposited dual functional hydrogel coatings with superhydrophilic and photocatalytic properties for efficient oil/water separation and dye photodegradation[J]. J Environ Chem Eng, 2024, 12(4): 113133. [14]Peng J, Su Y, Shi Q, et al. Protein fouling resistant membrane prepared by amphiphilic pegylated polyethersulfone[J]. Bioresour Technol, 2011, 102(3): 2289-2295. [15]Zhao X, Su Y, Li Y, et al. Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances[J]. J Membr Sci, 2014, 450: 111-123. [16]Hoda A K, Aernouts B, Saeys W, et al. Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes[J]. J Membr Sci, 2013, 442: 196-205. [17]Xu Z, Liao J, Tang H, et al. Preparation and antifouling property improvement of Trger’s base polymer ultrafiltration membrane[J]. J Membr Sci, 2018, 561: 59-68. [18]Han D J, Kim J F, Lee J C, et al. Design of an ionic PVDF-based additive for PVDF water purification membranes with anti-fouling and bactericidal activities[J]. J Membr Sci, 2023, 683: 121839. [19]姜忠义, 陈文娟, 苏延磊. 抗污染膜表面构建的研究进展[J]. 膜科学与技术, 2011, 31(3): 64-68,85. [20]Wei L, Song J, Cheng B, et al. Synthesis, characterization and antibacterial properties of novel cellulose acetate sorbate[J]. Carbohydr Polym, 2020, 243: 116416. [21]Antunes B d F, Santana L R, Oliveira R M, et al. Cellulose, cellulose nanofibers, and cellulose acetate from Butia fruits (Butia odorata): Chemical, morphological, structural, and thermal properties[J]. Int J Biol Macromol, 2024, 281: 136151. [22]Shah V, Wang B, Li K. Blending modification to porous polyvinylidene fluoride (PVDF) membranes prepared via combined crystallisation and diffusion (CCD) technique[J]. J Membr Sci, 2021, 618: 118708. [23]Zhang D, Chen L, Xu M, et al. Visible-light responsive PVDF/carbon sphere@TiO2 membrane for dye scavenging and bacteria inactivation [J]. Appl Surf Sci, 2022, 605: 154755. [24]Ghanbari-Siahkali A, Mitra S, Kingshott P, et al. Investigation of the hydrothermal stability of cross-linked liquid silicone rubber (LSR)[J]. Polym Degrad Stab, 2005, 90(3): 471-480. [25]Wu L, Sun J. An improved process for polyvinylidene fluoride membrane preparation by using a water soluble diluent via thermally induced phase separation technique[J]. Mater Des, 2015, 86: 204-214. [26]Zhang H, Lu X, Liu Z, et al. Study of the dual role mechanism of water-soluble additive in low temperature thermally-induced phase separation[J]. J Membr Sci, 2017, 543: 1-9. [27]Chen R, Mao L, Matindi C N, et al. Tailoring the micro-structure of PVC/SMA-g-PEG blend ultrafiltration membrane with simultaneously enhanced hydrophilicity and toughness by in situ reaction-controlled phase inversion[J]. J Membr Sci, 2022, 653: 120545. [28]Zhao S, Wang Z, Wei X, et al. Performance improvement of polysulfone ultrafiltration membrane using PANiEB as both pore forming agent and hydrophilic modifier[J]. J Membr Sci, 2011, 385/386: 251-262. [29]Wang Z, Yu H, Xia J, et al. Novel GO-blended PVDF ultrafiltration membranes[J]. Desalination, 2012, 299: 50-54. [30]Mao H, Zhou S, Li M, et al. PVDF ultrafiltration membrane with enhanced mechanical and filtration performance by hydrophilic pH-response nanofibers modification[J]. Sep Purif Technol, 2023, 314: 123613. [31]Wei Y, Chu H Q, Dong B Z, et al. Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance[J]. Desalination,2011,272(1/2/3): 90-97. [32]Liang S, Kang Y, Tiraferri A, et al. Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles[J]. ACS Appl Mater Interfaces, 2013, 5(14): 6694-6703. [33]Liu Q, Huang S, Zhang Y, et al. Comparing the antifouling effects of activated carbon and TiO2 in ultrafiltration membrane development[J]. J Colloid Interface Sci, 2018, 515: 109-118. |
|
Service: |
| 【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号