|
Preparation and CO2/H2 separation performance of boron-doped DDR zeolite membranes |
| Authors: ZHOU Shihang, LI Jingbo, ZHANG Yuting |
| Units: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China |
| KeyWords: DDR zeolite membrane; CO2/H2 separation; boron doping; sodium tetraborate; hollow fiber |
| ClassificationCode:TQ028.1 |
| year,volume(issue):pagination: 2025,45(6):53-60 |
|
Abstract: |
|
DDR zeolite membrane has been attractive in CO2 separation because of its suitable pore size and good thermochemical stability. However, it has limited selectivity in CO2/H2 separation. To address this issue, boron-doped DDR (B-DDR) zeolite membranes were synthesized on four-channel α-Al2O3 hollow fibers by secondary growth using sodium tetraborate as the boron source. The successful doping of B atoms in DDR zeolite framework was confirmed by XRD, BET surface area and FTIR results. The CO2 adsorption results demonstrated that the doping of B atoms improved the CO2 adsorption amount of DDR zeolite. When the molar ratio of sodium tetraborate in precursor was 0.2, the CO2 permeance of the resultant membrane (B0.8-DDR membrane) in the separation of equimolar CO2/H2 mixed gas at 298 K was 3.60×10-8 mol/(m2·s·Pa). The CO2/H2 selectivity of the membrane was 15.60, which was more than twice of that of the DDR zeolite membrane (5.91). Lowering temperature or increasing feed pressure was beneficial for improving separation selectivity of the B-DDR membrane. The maximum CO2/H2 selectivity was achieved when the CO2 feed concentration was 50% (volume fraction). In addition, the membrane maintained stable separation performance under humid environment, indicating the good tolerance of the membrane to water vapor. |
|
Funds: |
| 国家自然科学基金面上项目(22378192) |
|
AuthorIntro: |
| 周诗航(2004-),男,江苏连云港人,研究方向为分子筛膜制备与分离. |
|
Reference: |
|
[1]Yang H, Xu Z, Fan M, et al. Progress in carbon dioxide separation and capture: A review[J]. J Environ Sci, 2008, 20(1): 14-27. [2]Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Appl Therm Eng, 2010, 30(1): 53-62. [3]Jeon Y W, Lee D H. Gas membranes for CO2/CH4 (biogas) separation: A review[J]. Environ Eng Sci, 2015, 32(2): 71-85. [4]Haryanto A, Fernando S, Merali N, et al. Current status of hydrogen production techniques by steam reforming of ethanol: A review[J]. Energ Fuel, 2005, 19(5): 2098-2106. [5]Aasberg-Petersen K, Hansen J H B, Christensen T S, et al. Technologies for large-scale gas conversion[J]. Appl Catal A: Gen, 2001, 221(1/2): 379-387. [6]Dang C, Long J, Li H, et al. Pd-promoted Ni-Ca-Al bi-functional catalyst for integrated sorption-enhanced steam reforming of glycerol and methane reforming of carbonate[J]. Chem Eng Sci, 2021, 230: 116226. [7]Voldsund M, Jordal K, Anantharaman R. Hydrogen production with CO2 capture[J]. Int J Hydrogen Energy, 2016, 41(9): 4969-4992. [8]Ebner A D, Ritter J A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries[J]. Sep Sci Technol, 2009, 44(6): 1273-1421. [9]Luis P, Van Gerven T, Van der Bruggen B. Recent developments in membrane-based technologies for CO2 capture[J]. Prog Energy Combust Sci, 2012, 38(3): 419-448. [10]Shen M, Tong L, Yin S, et al. Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review[J]. Sep Purif Technol, 2022, 299: 121734. [11]Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. J Membr Sci, 2006, 279(1/2): 1-49. [12]Dai Y, Niu Z, Luo W, et al. A review on the recent advances in composite membranes for CO2 capture processes[J]. Sep Purif Technol, 2023, 307: 122752. [13]He W, Wang Z, Li W, et al. Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation[J]. J Membr Sci, 2015, 476: 171-181. [14]Salim W, Ho W S W. Recent developments on nanostructured polymer-based membranes[J]. Curr Opin Chem Eng, 2015, 8: 76-82. [15]Lin Y S, Duke M C. Recent progress in polycrystalline zeolite membrane research[J]. Curr Opin Chem Eng, 2013, 2(2): 209-216. [16]Korelskiy D, Ye P, Fouladvand S, et al. Efficient ceramic zeolite membranes for CO2/H2 separation[J]. J Mater Chem A, 2015, 3(23): 12500-12506. [17]Lei L, Pan F, Lindbrthen A, et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation[J]. Nat Commun, 2021, 12(1): 268. [18]Wang L, Zhang C, Gao X, et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature[J]. J Membr Sci, 2017, 539: 152-160. [19]Zhou Y, Du P, Song Z, et al. Synthesis of thin DD3R zeolite membranes on hollow fibers using gradient-centrifuged seeds for CO2/CH4 separation[J]. J Membr Sci Lett, 2023, 3(1): 100038. [20]Van den Bergh J, Zhu W, Gascon J, et al. Separation and permeation characteristics of a DD3R zeolite membrane[J]. J Membr Sci, 2008, 316: 35-45. [21]Okazaki J, Hasegawa H, Chikamatsu N, et al. DDR-type zeolite membrane: A novel CO2 separation technology for enhanced oil recovery[J]. Sep Purif Technol, 2019, 218: 200-205. [22]Zhang P, Gong C, Zhou T, et al. Helium extraction from natural gas using DD3R zeolite membranes[J]. Chin J Chem Eng, 2022, 49: 122-129. [23]Van den Bergh J, Tihaya A, Kapteijn F. High temperature permeation and separation characteristics of an all-silica DDR zeolite membrane[J]. Micropor Mesopor Mater, 2010, 132: 137-147. [24]Othman M R, Tan S C, Bhatia S. Separability of carbon dioxide from methane using MFI zeolite-silica film deposited on gamma-alumina support[J]. Micropor Mesopor Mater, 2009, 121: 138-144. [25]Sebastián V, Kumakiri I, Bredesen R, et al. Zeolite membrane for CO2 removal: Operating at high pressure[J]. J Membr Sci, 2007, 292: 92-97. |
|
Service: |
| 【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号