|
Experimental study and process simulation of CO2 removal by membrane separation for online reuse of xenon in medical anesthesia |
| Authors: LI Lixin, MA Yingchao, WANG Changchun, REN Yanbo, REN Xiaoguang, LIU Jianhui, LIU Dandan, WANG Lina, YU Haijun, KANG Guodong, CAO Yiming, JIE Xingming |
| Units: 1. Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China; 2. The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; 3. Yulin Zhongke Clean Energy Innovation Research Institute, Yulin 719111, China |
| KeyWords: xenon anesthesia gas; hollow fiber membrane; xenon recovery; CO2 removal of mixed gas |
| ClassificationCode:TQ028.8 |
| year,volume(issue):pagination: 2025,45(6):98-107 |
|
Abstract: |
|
Medical xenon anesthesia gas will be mixed with a certain concentration of CO2 after human metabolic cycle. In order to meet the requirements of recycling, the CO2 concentration should be reduced to less than 0.50%. Commercial polyetherimide (PEI) and polysulfone (PSf) were used as raw materials to prepare hollow fiber membranes. The permeation rates of O2, N2, Xe and CO2 in the two membranes were measured. Using the volume fraction of 5.0% CO2/25.0% O2/5.0% N2/65.0% Xe (surrogated by N2) as the feed gas, the effects of vent ratio (ratio of retentate gas and permeate gas flow), inlet pressure and other parameters on the CO2 removal performance were systematically studied through the self-made PEI and PSf hollow fiber membrane modules at room temperature. Based on the experimental data, a two-stage membrane separation simulation system was designed. The experimental results showed that the CO2/N2 and CO2/Xe separation coefficients of PEI membrane were higher than that of PSf membrane with lower gas permeation rates. Increasing the vent ratio would increase the gas treatment capacity of membrane, but lead to the increase of CO2 concentration in the retentate gas. The increase of feed gas pressure obviously promoted the CO2 removal process driven by pressure difference, and produced more gas that met the reuse standard. The pressure of the actual mixed gas CO2 removal process was relatively low, and the performance of the membrane module was more obviously affected by its gas permeation rate on the premise that the two membrane separation coefficients were both high. The xenon recovery rate of the two-stage membrane separation simulation system established based on the experimental data was 98.90%, and the CO2 concentration in the regenerated xenon anesthesia mixture was not higher than 0.50%, which meets the requirements of recycling and greatly reduces the cost of anesthesia xenon. |
|
Funds: |
| 大医一院-大连化物所医工联合创新基金(DMU-1&DICP UN202305); 国家自然科学基金面上项目(22178333); 榆林中科洁净能源创新研究院能源革命科技专项联合基金项目(E411080316); 大连市科技创新基金重点学科重大课题项目(2022JJ11CG006) |
|
AuthorIntro: |
| 李立鑫(2000-),男,辽宁大连人,硕士生,主要研究方向为膜分离技术. |
|
Reference: |
|
[1]Stuart C, Cullen, Erwin G. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton[J]. Science (New York, N.Y.), 1951, 113(2942): 580-582. [2]Coburn M, Baumert J H, Roertgen D, et al. Emergence and early cognitive function in the elderly after xenon or desflurane anaesthesia: a double-blinded randomized controlled trial[J]. Br J Anaesth, 2007, 98(6): 756-762. [3]Ishiguro Y. Cardiovascular effects of xenon[J]. Int Anesthesio Clin, 2001, 39(2): 77-84. [4]Chakkarapani E, Thoresen M, Hobbs C E, et al. A closed-circuit neonatal xenon delivery system: a technical and practical neuroprotection feasibility study in newborn pigs[J]. Anesth Analg, 2009, 109(2): 451-460. [5]庞萍. 氙气麻醉在体外循环手术中应用的研究进展[J]. 医学理论与实践, 2018, 31(10): 1431-1433. [6]Zhu Q, Jung D Y, Oganov A R, et al. Stability of xenon oxides at high pressures[J]. Nat Chem, 2013, 5(1): 61-65. [7]Bonhomme V, Staquet C, Montupil J, et al. General anesthesia: A probe to explore consciousness[J]. Front Syst Neurosci, 2019, 13: 36. [8]Lagorsse S, Magalhes F D, Mendes A. Xenon recycling in an anaesthetic closed-system using carbon molecular sieve membranes[J]. J Membr Sci, 2007, 301(1/2): 29-38. [9]Cheng M, Wang S, Zhang Z, et al. High-throughput virtual screening of metal-organic frameworks for xenon recovery from exhaled anesthetic gas mixture[J]. Chem Eng J, 2023, 451: 138218. [10]Zeng J, Fu Y, Wu Y, et al. Absolute CO2/Xenon separation in ultramicropore MOF for anesthetic gases regeneration[J]. Angew Chem Int Ed, 2023, 62(42): e202310235. [11]Dingley J, Mason R S. A cryogenic machine for selective recovery of xenon from breathing system waste gases[J]. Anesth Analg, 2007, 105(5): 1312-1318. [12]苏勇. 低温精馏法空气分离的能耗分析与节能对策[J]. 化工管理, 2019, (7): 43. [13]张文挺, 翟璇, 周嘉, 等. 二氧化碳捕集技术发展综述[J].南方能源建设, 2025, 6(6): 1-11. [14]Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. [15]Zhmakin V V, Markova S Y, Teplyakov V V, et al. Potential of polymer membranes for xenon recovery from medical waste gas mixtures[J]. Membr Membr Technol, 2023, 5(2): 107-114. [16]Budd P M, Msayib K J, Tattershall C E, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. J Membr Sci, 2005, 251(1/2): 263-269. [17]张成意. 膜分离技术在绿色产业发展方面的应用[J]. 天津化工, 2024, 38(1): 29-31. [18]杨磊. 膜分离技术在重金属废水处理中的优化与应用[J]. 化工设计通讯, 2025, 51(4): 120-128. [19]安少杭, 陈占营, 刘蜀疆, 等. 聚酰亚胺中空纤维膜材料自由体积与氙渗透性能相关性研究[J]. 现代应用物理, 2024, 15(6): 179-188. [20]Kozlova A, Zhmakin V, Markova S, et al. Xenon recovery from medical gas mixtures by polymer membranes: Effect of temperature on Xe/O2 selectivity[J]. J Membr Sci, 2024, 698: 122527. [21]陈占营, 刘蜀疆, 常印忠, 等. 气体分离膜材料从空气中分离氙气性能研究[J]. 膜科学与技术, 2025, 45(1): 137-145. [22]祁娅婷. PVDF中空纤维膜的功能化改性及性能研究[D]. 贵阳:贵州大学, 2019. [23]杨飞, 王潮, 张园园, 等. PEI中空纤维膜的制备及其结构形态调控[J]. 合成纤维工业, 2024, 47(6): 14-19. [24]赵帅. 聚酰亚胺中空纤维膜的制备与富氧性能的研究[D]. 大连:大连交通大学,2023. [25]刘京京, 张亚彬, 杜雄飞. 硅橡胶-玻璃中空纤维富氧膜的制备[J]. 玻璃, 2019, 46(1): 7-11. [26]张旭, 孟令鹏, 李培. 提高硅橡胶的粘附性制备多层复合膜[J]. 膜科学与技术, 2020, 40(6): 37-43. [27]Dal-Cin M M, Darcovich K, Saimani S, et al. Gas separation transport modeling for PDMS coatings on PEI-PEG IPN membranes[J]. J Membr Sci, 2010, 361(1/2): 176-181. [28]Roslan R A, Lau W J, Ismail A F, et al. Recent 10-year development on surface modification of polymeric hollow fiber membranes via surface coating approach for gas separation: A review[J]. J Mater Sci, 2024, 59(23): 10083-10118. [29]王常春, 赵琦, 丛玉凤, 等. 天然气膜法脱碳过程中节流降温行为的研究[J]. 膜科学与技术, 2023, 43(3): 22-29. [30]张旭. 中空纤维气体分离复合膜的涂覆工艺与性能研究[D]. 北京:北京化工大学, 2020. [31]李立鑫, 宋曦智, 王常春, 等. 天然气膜法脱碳中节流降温及重烃污染研究[J]. 膜科学与技术, 2025, 45(1): 1-10. |
|
Service: |
| 【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号