Position:Home >> Abstract

Study on soybean protein concentration using disk ceramic
membrane and membrane cleaning
Authors: CHEN Boyi, LI Guixiang, ZENG Dongqing, YAO Meng, HONG Yubin
Units: Suntar Membrane Technology (Xiamen) Co., Ltd., Xiamen 361022, China
KeyWords: disk ceramic membrane; soybean protein; non-Newtonian fluid; membrane fouling; Maillard reaction
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2025,45(6):148-154

Abstract:
A critical challenge of conventional membrane technologies in concentrating soybean protein solutions is their low concentration factors, which fail to meet the required feed concentration for subsequent drying and result in high energy costs. This study employed the disk ceramic membrane to concentrate soybean protein, and compared it with the tubular ceramic membrane. Operating parameters (pore sizes, transmembrane pressures, and rotation speeds) of the disk ceramic membrane and flux recovery performance using different cleaning methods were investigated. Results showed that the tubular ceramic membrane concentrated soybean protein solutions by about 2 times, while the disk ceramic membrane achieved approximately 4 times concentration. The maximum solid content of the concentrated solutions from the tubular ceramic membrane was 9.4%. In comparison, the disk ceramic membrane reached 19.2%. The concentrated solutions of the disk ceramic membrane met feed requirements of subsequent drying. It maintained higher permeation flux and concentration efficiency under optimized conditions (100 nm pore size, 0.2 MPa transmembrane pressure, and ≥300 r/min rotation speed). Membrane fouling, caused by the coexistence of saccharides and proteins, was mostly removed through integrated physical and chemical cleaning methods. The formation of melanoidins in the final stage of the Maillard reaction was inhibited by shortening the time and lowering the temperature during alkaline cleaning. The water flux of the disk ceramic membrane was successfully recovered. This study offers a green and highly efficient approach with high concentration factors for non-Newtonian fluids in fields, such as food, beverages, pharmaceuticals, enzymes, fermentation and plant extracts. It also provides cleaning guidance for membrane fouling caused by the coexistence of saccharides and proteins.
 

Funds:
2024年厦门市重大科技计划项目(3502Z2024QY014) 陈柏义(1992-),男,福建漳平人,工程师,硕士研究生,主要研究方向为膜组件与应用开发.

AuthorIntro:
陈柏义(1992-),男,福建漳平人,工程师,硕士研究生,主要研究方向为膜组件与应用开发.

Reference:
[1]江连洲, 吴海波, 王秋京. 酶解改性大豆蛋白的膜过滤制备技术研究[J]. 中国油脂, 2010, 35(11): 23-27.
[2]戴海平, 孙方, 李泓, 等. 超滤浓缩大豆蛋白工艺中的膜污染清洗方法研究[J]. 天津轻工业学院学报,2003, 18(4): 8-10.
[3]Vishwanathan K H, Govindaraju K, Singh V, et al. Production of okara and soy protein concentrates using membrane technology[J]. J Food Sci, 2011, 76(1): 158-164.
[4]郑志雄. 大豆分离蛋白喷雾干燥过程中的热变性及其抑制机理研究[D]. 广州: 华南理工大学, 2011.
[5]郭庆强, 焦锋, 郭天骏, 等. 一种生产大豆分离蛋白的喷雾干燥工艺:201910040940.6[P].2019-04-05.
[6]Shallo H E, Rao A, Ericson A P, et al. Preparation of soy protein concentrate by ultrafiltration[J]. J Food Sci,2001, 66(2): 242-246.
[7]Jaffrin M Y. Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update [J]. Curr Opin Chem Eng, 2012, 1(2): 171-177.
[8]Ding L, Jaffrin M Y, Luo J. Chapter two - dynamic filtration with rotating disks, and rotating or vibrating  membranes[M]// Progress in Filtration and Separation, Academic Press, 2015: 27-59.
[9]白玲, 蓝伟光, 万金保. 双轴旋转膜组件应用于浸没式厌氧膜生物反应器的研究[J]. 南昌大学学报(科版), 2010, 32(3): 218-222.
[10]刘光华, 常启兵, 何世斌, 等. 高性能碟式陶瓷膜在油水乳液分离中的研究[J]. 膜科学与技术, 2022,42(2): 72-77.
[11]刘彬彬, 李敬, 苏仪, 等. 旋转超滤膜组件澄清乳酸发酵液膜污染研究[C]//第四届中国膜科学与技术报告会,2010.
[12]Schfer J, Bast R, Atamer Z, et al. Concentration of skim milk by means of dynamic filtration using overlapping rotating ceramic membrane disks[J]. Int Dairy J, 2018, 78: 11-19.
[13]Rayess Y E, Manon Y, Jitariouk N, et al. Wine clarification with rotating and vibrating filtration (RVF): Investigation of the impact of membrane material, wine composition and operating conditions[J]. J Membr Sci,2016, 513: 47-57.
[14]Zhang W, Ding L, Grimi N, et al. Application of UF-RDM (ultafiltration rotating disk membrane) module for separation and concentration of leaf protein from alfalfa juice: optimization of operation conditions[J]. Sep Purif Technol, 2017, 175: 365-375.
[15]裴少芬, 王晓霞, 钟亮, 等. 旋转圆盘型陶瓷膜过滤绿茶浸提液的研究[J]. 中国茶叶加工, 2015(4): 46-49.
[16]徐舟. 旋转圆盘动态膜过滤系统的计算流体力学研究[D]. 大连: 大连理工大学, 2009.
[17]田少君, 雷继鹏, 孙阿鑫. 大豆蛋白的流变特性及其黏度的数学模型研究[J]. 中国粮油学报, 2005(2): 53-56.
[18]汪勇, 唐书泽, 张志森, 等. 无机陶瓷膜超滤法制备大豆分离蛋白的研究[J]. 中国油脂, 2003, 28(12):19-22.
[19]曲家妮. 大豆蛋白分级分离工艺的研究[D]. 广州: 华南理工大学, 2010.
[20]杨国龙, 赵谋明, 杨晓泉, 等. 大豆蛋白超滤过程中膜清洗方法的研究[J]. 食品工业科技, 2005(6): 92-95.
[21]朱传柳, 赵士明, 章小同, 等. 新型孔径陶瓷膜澄清棒酸发酵液的研究[J]. 中国抗生素杂志, 2019, 44(8): 924-929.
[22]薛远, 宋春丽, 任健. 美拉德反应调控大豆蛋白功能性质的研究进展[J]. 现代食品, 2022, 28(9): 4-8.
[23]丁欣悦, 张国文. 湿法美拉德反应与转谷氨酰胺酶交联对大豆分离蛋白功能性质的影响[J]. 南昌大学学报(理科版), 2017, 41(5): 464-469.
[24]王鲁慧, 肖军霞, 徐同成, 等. 湿热条件下大豆分离蛋白与葡萄糖、麦芽糖的美拉德反应[J]. 食品科学,2018, 39(16): 19-26.
[25]李林, 卢家炯. 美拉德反应的抑制及消除方法[J]. 广西轻工业, 2000(4): 16-18.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号