|
Performance and dynamic fouling mechanism of ultrafiltration membrane treating the desulfurization wastewater from the coal-fired power plant |
| Authors: WU Weitao, GUI Shuanglin, ZHANG Daohua, FU Jiaqi, CHEN Tao, WANG Yiwen, ZHENG Libing, WEI Yuansong |
| Units: 1. Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, College of Resources and Environment, Nanchang University, Nanchang 330047, China; 2. Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 3. Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China; 4. Jiangxi Carbon Neutralization Research Center, Nanchang 330096,China; 5. KU Leuven, Leuven 3001,Belgium |
| KeyWords: desulfurization wastewater; ultrafiltration; flux decline; Hermia model; membrane fouling |
| ClassificationCode:X703.1;TQ028 |
| year,volume(issue):pagination: 2025,45(6):155-165 |
|
Abstract: |
|
The efficient and stable removal of suspended solids (SS) from desulfurization wastewater is a critical challenge for achieving zero liquid discharge (ZLD) of coal-fired power plants. In this study, ultrafiltration (UF) was employed to remove SS from the desulfurization wastewater, and the effects of membrane pore size and material on the separation performance were systematically investigated, with a focus on the flux decline and the dynamic evolution of membrane fouling. It was found that all UF membranes achieved high SS rejection (>99%) through cake layer formation, demonstrating the potential of UF in desulfurization wastewater treatment. However, the pore size and material significantly influenced the flux decline process. Increasing the initial flux would lead to a rapid flux decline and significantly influence the fouling layer formation process. Hermia model revealed a two-stage transition in fouling mechanism in UF: the intermediate blocking was the leading mechanism at the beginning, which turned to cake layer filtration in the final stage due to the accumulation of SS. The transition stage was delayed for membrane with larger pores, which was attributed to the more particles accumulated into the membrane pores before cake layer formation for the low rejection and high flux. Meanwhile, membrane material also influenced both the initial fouling mechanism and the subsequent transition: complete pore blocking was the main mechanism for PES membrane, and intermediate blocking was the main mechanism for PVDF and PS membranes. What also worth noting is that the PAN membrane underwent a three-stage fouling mechanism transition from standard blocking to intermediate blocking, and followed by cake layer model at the last stage. This study reveals the dynamic fouling and flux decline mechanism in UF process, which can provide theoretical supports for the application of UF in desulfurization wastewater. |
|
Funds: |
| 江西省科学院省级财政科研项目经费包干制试点示范项(2023YSBG10004); 北京市科技新星项目(20240484679); 江西省科学院省级科研院基础研究与人才类科研经费项目(2022YYBG18) |
|
AuthorIntro: |
| 吴伟涛 (2001-) ,男,江西抚州人,硕士研究生,研究方向为膜法水处理技术. |
|
Reference: |
|
[1]郑利兵, 魏源送, 焦赟仪, 等. 零排放形势下热电厂脱硫废水处理进展及展望[J]. 化学工业与工程, 2019, 36(1): 24-37. [2]陈海杰, 麻晓越, 魏新, 等. 脱硫废水浓缩液旋转喷雾蒸发及其产物特性研究[J]. 动力工程学报, 2024, 44(10): 1656-1662. [3]黄开龙, 杨庆, 潘赫男, 等. 燃煤电厂脱硫废水资源化技术研究进展[J]. 能源环境保护, 2023, 37(1): 157-166. [4]刘静颖, 贾阳杰, 杨凤玲, 等. 燃煤电厂脱硫废水零排放预处理工艺研究进展[J]. 无机盐工业, 2023, 55(12): 12-25. [5]何绪文, 张斯宇, 何灿. 焦化废水深度处理现状及技术进展[J]. 煤炭科学技术, 2020, 48(1): 100-107. [6]童裕佳, 刘桂娟, 李佳尧, 等. 井下煤矿采出水回用陶瓷膜集成工艺研究[J]. 膜科学与技术, 2024, 44(4): 96-104. [7]王怀林, 云金明, 吴欢, 等. 膜分离技术在脱硫废水零排放处理中的应用研究[J]. 膜科学与技术, 2018, 38(6): 105-110. [8]王远远, 王仪, 黄思怡, 等. 高盐有机废水超滤处理的膜污染机制和分离效果研究[J]. 膜科学与技术, 2024, 44(6): 26-36. [9]Chen Y, Zhang R, Wu G, et al. Thermodynamic mechanism insights into the dynamic evolution of nanofiltration membrane fouling: Effect of calcium ion on organic fouling[J]. Desalination, 2023, 568: 117036. [10]Yuan W, Chen X, Yu Z, et al. Critical review of membrane fouling in reverse osmosis treatment: Characterizations, models, mechanisms, and controls[J]. Sep Purif Technol, 2025, 363: 132119. [11]雷宏军, 杨光, 潘红卫, 等. 水化学离子对溶解有机物三维荧光光谱影响及分类预处理方法[J]. 光谱学与光谱分析, 2024, 44(1): 134-140. [12]Corbatón-Báguena M J, Vincent-Vela M C, Gozálvez-Zafrilla J M, et al. Comparison between artificial neural networks and Hermia’s models to assess ultrafiltration performance[J]. Sep Purif Technol, 2016, 170: 434-444. [13]Lin J C T, Wang T, Ku Y H, et al. Profiling vertical distribution of scalants in RO membranes by LA-ICP-MS and fouling models[J]. Sep Purif Technol, 2014, 136: 296-302. [14]Shimizu Y, Okuno Y I, Uryu K, et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment[J]. Water Research, 1996, 30(10): 2385-2392. [15]陈简素璇, 戴若彬, 田晨昕, 等. 多孔纳米材料改性水处理超滤膜的研究进展[J]. 化工进展, 2022, 41(1): 264-276. [16]吕佳洋, 宋宏臣, 王建明, 等. 不同结构的聚醚砜膜过滤阻力分析及耐碱性能研究[J]. 化工新型材料, 2024, 52(1): 258-263,269. [17]Jacquin C, Lesage G, Traber J, et al. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR)[J]. Water Research, 2017, 118: 82-92. [18]曾凯亮, 汪朝晖, 崔朝亮, 等. 超滤膜在处理农药废水过程中的膜污染行为分析[J]. 膜科学与技术, 2018, 38(2): 98-105. [19]李维佳, 李宏深. 原水颗粒物对超滤膜通量的影响及其污染机理[J]. 净水技术, 2014, 33(3): 41-47. [20]Niu B, Yang L, Meng S, et al. Time-dependent analysis of polysaccharide fouling by Hermia models: Reveal the structure of fouling layer[J]. Sep Purif Technol, 2022, 302: 122093. [21]熊勤梅, 肖胜舰, 黄钧, 等. 发酵型青梅酒的微滤:膜污染分析与品质评价[J]. 食品与发酵工业, 2020, 46(15): 77-83. [22]Heidari S, Amirinejad M, Jahangirian H. Investigation of fouling mechanisms using surface morphology and physicochemical membrane features [J]. Chem Eng Technol, 2019, 42(6): 1310-1320. [23]李方, 吴亮, 杨波, 等. 盐类对模拟胞外聚合物(EPS)膜污染的影响[J]. 环境工程学报, 2014, 8(3): 839-844. [24]张云. 中药模拟溶液超滤过程的膜污染解析及分离机制研究[D]. 南京:南京中医药大学,2022. [25]Duan M, Wang Z, Xu J, et al. Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance[J]. Sep Purif Technol, 2010, 75(2): 145-155. [26]王晨宇, 吕晓龙, 谷杰, 等. 抗污染PVDF-CTFE膜耦合亲水改性研究[J]. 膜科学与技术, 2024, 44(4): 123-129,139. [27]Chen Y, Nan J. Magnetic nanoparticle loading and application of weak magnetic field to reconstruct the cake layer of coagulation-ultrafiltration process to achieve efficient antifouling: Performance and mechanism analysis[J]. Water Research, 2024, 254: 121435. |
|
Service: |
| 【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号