正渗透膜对再生水中不同抗生素的截留特性研究 |
作者:丁嘉奇,蔡腾,黄满红 |
单位: 东华大学环境科学与工程学院,国家环境保护纺织污染防治工程技术中心,上海201620 |
关键词: 正渗透(FO)膜;水通量;溶质返混;抗生素;截留率 |
出版年,卷(期):页码: 2018,38(6):97-104 |
摘要: |
采用商业正渗透膜对废水中的3种不同抗生素(甲氧苄啶、四环素和磺胺甲噁唑)进行截留。研究了不同汲取液浓度、种类、共存污染物、pH值对3种抗生素的截留效果的影响。结果表明,提高汲取液浓度可以增加正渗透膜水通量,但也增加了溶质返混通量;由于3种抗生素的带电电荷和结构不同,与膜的表面作用也不同,TMP截留率>TC截留率>SMZ截留率,不同的抗生素的主导截留机制不同;共存污染物腐殖酸和牛血清白蛋白会促进抗生素的截留,且在碱性条件下抗生素的截留率会进一步升高。这些实验结果可为FO应用于抗生素废水的处理提供参数。 |
Three antibiotics with different charges,trimethoprim, tetracycline, and sulfamethoxazole were used to be rejected in waste water by a commercial forward osmosis membrane. The effects of different types of draw solution onthebasic properties of the forward osmosis membranewere studied. In addition, the effects of draw solution, organic contaminantsand different environmental pH on the rejection of three antibiotics under optimal conditions were also explored. The results showed that increasing the concentration of draw solution increased the water flux of the forward osmosis membrane and the reverse solution flux. Attributed to three kinds of antibiotics with different electric charge, they have different effects on the membrane. The rejection rate is ranked as TMP>TC>SMZ.In the presence of organic pollutants, alkaline condition will increase the rejection rate of the three antibiotics. These resultscan provide parameters for the treatment of antibiotic wastewater by a FO process. |
第一作者简介:丁嘉奇(1995-),女,上海,硕士研究生,研究方向为正渗透膜及其在环境中的应用。*通讯作者,E-mail:huangmanhong@dhu.edu.cn |
参考文献: |
[1] Liu P, Zhang H, Feng Y, Shen C, Yang F. Influence of spacer on rejection of trace antibiotics in wastewater during forward osmosis process[J]. Desalination, 2015, 371(3): 134-143. [2] 刘鹏霄. 城市污水处理厂中痕量抗生素的归趋及其减排技术研究[D]. 大连理工大学, 2014. [3] Michael I, Rizzo L, Mcardell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review[J]. Water Res., 2013, 47(3): 957-995. [4] 孔维杰, 苏荣军, 马彩霞, 唐礼燕, 苑洪磊, 关莹. 抗生素制药废水的处理现状[J]. 新商务周刊, 2016, (8). [5] Choi K J, Kim S G, Kim S H. Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon[J]. Environ.Technol., 2008, 29(3): 333-42. [6] Yu T H, Yuchen, Lateef S K, Lin C F, Yang P Y. Removal of antibiotics and non-steroidal anti-inflammatory drugs by extended sludge age biological process[J]. Chemosphere, 2009, 77(2): 175-81. [7] Hancock N T, Xu P, Roby M J, Gomez J D, Cath T Y. Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale[J]. J.Membr. Sci., 2013, 445(20): 34-46. [8] Vogel D, Simon A, Alturki A A, Bilitewski B, Price W E, Long D N. Effects of fouling and scaling on the retention of trace organic contaminants by a nanofiltration membrane: The role of cake-enhanced concentration polarisation[J]. Sep. Purif. Technol., 2010, 73(2): 256-263. [9] Sahar E, David I, Gelman Y, Chikurel H, Aharoni A, Messalem R, Brenner A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater[J]. Desalination, 2011, 273(1): 142-147. [10] Sassman S A, Lee L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange[J]. Environ. Sci. Technol., 2005, 39(19): 7452-9. [11] Phuntsho S, Shon H K, Majeed T, El S I, Vigneswaran S, Kandasamy J, Hong S, Lee S. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination[J]. Environ.Sci.Technol., 2012, 46(8): 4567-4575. [12] Xie M, Luo W, Guo H, Long D N, Tang C Y, Gray S R. Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability[J]. Water Res., 2018, 132: 90-98. [13] 刘彩虹. 正渗透工艺特性及膜污染特征研究[D]. 哈尔滨工业大学, 2013. [14] 侯耀华. 正渗透膜制备及其含盐水处理性能初探[D]. 哈尔滨工业大学, 2010. [15] Chekli L, Phuntsho S, Shon H K, Vigneswaran S, Kandasamy J, Chanan A. A review of draw solutes in forward osmosis process and their use in modern applications[J]. Desalin.Water.Treat., 2012, 43(1-3): 167-184. [16] 徐奇. 典型抗生素及耐药性在AAO-正渗透膜中的去除特性研究[D]. 东华大学, 2016. [17] Pan S F, Zhu M P, Chen J P, Yuan Z H, Zhong L B, Zheng Y M. Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane – Implications for antibiotics recovery[J]. Sep. Purif. Technol., 2015, 153: 76-83. [18] 徐奇, 黄满红, 孟李君, 郑宇. 正渗透膜对再生水中磺胺甲恶唑去除研究[J]. 水处理技术, 2016, (5): 8-11. [19] Ming X, Price W E, Long D N, Elimelech M. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis[J]. J. Membr. Sci., 2013, 438(7): 57-64. [20] Ming X, Long D N, Price W E, Elimelech M. Impact of organic and colloidal fouling on trace organic contaminant rejection by forward osmosis: Role of initial permeate flux[J]. Desalination, 2014, 336(1): 146-152. [21] Long D N, Schäfer A I, Elimelech M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane[J]. J. Membr. Sci., 2006, 286(1): 52-59. [22] Ming X, Price W E, Long D N. Rejection of pharmaceutically active compounds by forward osmosis: Role of solution pH and membrane orientation[J]. Sep. Purif. Technol., 2012, 93(3): 107-114. [23] Jin X, Shan J, Wang C, Wei J, Tang C Y. Rejection of pharmaceuticals by forward osmosis membranes[J]. J. Hazard. Mater., 2012, 227-228(5): 55-61. [24] 陈路平. UV/Fenton法降解二级出水中典型抗生素的研究[D]. 河北工程大学, 2017. [25] 潘雪. 二级出水中污染物对正渗透膜分离效果的影响及膜污染机理研究[D]. 青岛理工大学, 2018. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号