压力驱动膜系统中流体剪切力及其对膜污染的影响
作者:杜星,张开明1,关妙婷1,王志红1,李圭白2,梁恒2
单位: 1. 广东工业大学土木与交通工程学院,广东广州 510006;2. 哈尔滨工业大学城市水资源与水环境国家重点实验室,黑龙江哈尔滨 150090
关键词: 膜污染;剪切力;表征手段;压力驱动膜;发展前景
出版年,卷(期):页码: 2018,38(6):138-148

摘要:
 膜分离技术广泛应用于城市污水处理、工业废水处理、苦咸水淡化和给水处理等方面,然而膜污染仍然是限制该技术发展的主要问题。其中,从水力条件的角度通过膜表面流体剪切力能有效控制膜污染。因此,研究膜流体剪切力对膜污染的影响具有实际意义。本文概述流体剪切力的计算方法、产生方式、表征手段及流体剪切力与膜污染的关系。最后指出,针对不同构型的膜池实现膜表面剪切力均匀分布、且开发表征剪切力的组合式方法将是未来的研究和发展方向。
 Pressure-driven membrane technology has gained increasing popularity in municipal/domestic and industrial wastewater treatment, desalination, and water reclamation. Careful manipulation of surface shear stress, which plays a vital role in membrane fouling control from a purely hydrodynamic perspective, can minimise concentration polarisation of solute on flat sheet membranes, or enhance the particle back transport from hollow fibre membranes. This review considers the techniques to generate turbulence and shear at the membrane surface, the magnitude of shear stress, and the experimental, as well as numerical methods for evaluation of shear stress. The literature teaches that future developments on shear stress for membrane systems must address, in addition to shear stress distribution and the development of combined analytical methods to characterise and visualise shear in situ for different membrane configurations.
第一作者简介:杜星(1989-),男,甘肃天水,副教授,博士研究生,博士,膜法水处理技术,E-mail:hitduxing@163.com 梁恒,E-mail:hitliangheng@163.com

参考文献:
 [1] Wang Z W, Ma J X, Tang C Y Y, et al. Membrane cleaning in membrane bioreactors: A review [J]. J Membrane Sci, 2014, 468(20): 276-307.
[2] Huang H, Schwab K, Jacangelo J G. Pretreatment for low pressure membranes in water treatment: a review [J]. Environ Sci Technol, 2009, 43(9): 3011-3019.
[3] 黄海鸥, 杨禹. 纳米材料与低压膜技术的耦合及其在饮用水处理中的应用 [J]. 北京师范大学学报(自然科学版), 2016, 52(6) : 823-828
[4] Dickhout J M, Moreno J, Biesheuvel P M, et al. Produced water treatment by membranes: A review from a colloidal perspective [J]. J Colloid Interface Sci, 2017, 487: 523-534.
[5] Schulz M, Soltani A, Zheng X, et al. Effect of inorganic colloidal water constituents on combined low-pressure membrane fouling with natural organic matter (NOM) [J]. J Membrane Sci, 2016, 507: 154-164.
[6] 王磊, 高哲, 米娜,等. 无机颗粒与腐殖酸复合共存时的超滤膜污染行为研究 [J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4) : 574-578
[7] Wibisono Y, Cornelissen E R, Kemperman A J B, et al. Two-phase flow in membrane processes: A technology with a future [J]. J Membrane Sci, 2014, 453(3): 566-602.
[8] Peter-Varbanets M, Margot J, Traber J, et al. Mechanisms of membrane fouling during ultra-low pressure ultrafiltration [J]. J Membrane Sci, 2011, 377(1): 42-53.
[9] Teychene B, Collet G, Gallard H. Modeling of combined particles and natural organic matter fouling of ultrafiltration membrane [J]. J Membrane Sci, 2016, 505: 185-193.
[10] Karimi H, Bajestani M B, Mousavi S A, et al. Polyamide membrane surface and bulk modification using humid environment as a new heat curing medium [J]. J Membrane Sci, 2017, 523: 129-137.
[11] Chang Q, Zhou J E, Wang Y, et al. Application of ceramic microfiltration membrane modified by nano-TiO 2 coating in separation of a stable oil-in-water emulsion [J]. J Membrane Sci, 2014, 456(8): 128-133.
[12] Le N L, Quilitzsch M, Cheng H, et al. Hollow fiber membrane lumen modified by polyzwitterionic grafting [J]. J Membrane Sci, 2017, 522: 1-11.
[13] Yu W Z, Liu H J, Xu L, et al. The pre-treatment of submerged ultrafiltration membrane by coagulation—Effect of polyacrylamide as a coagulant aid [J]. J Membrane Sci, 2013, 446(11): 50-58.
[14] Yu W Z, Xu L, Qu J H, et al. Investigation of pre-coagulation and powder activate carbon adsorption on ultrafiltration membrane fouling [J]. J Membrane Sci, 2014, 459: 157-168.
[15] Yu W, Graham N J D. Application of Fe(II)/K 2 MnO 4 as a pre-treatment for controlling UF membrane fouling in drinking water treatment [J]. J Membrane Sci, 2015, 473(9): 283-291.
[16] Radu A I, Van Steen M S H, Vrouwenvelder J S, et al. Spacer geometry and particle deposition in spiral wound membrane feed channels [J]. Water Res, 2014, 64(22): 160-176.
[17] Qaisrani T M, Samhaber W M. Impact of gas bubbling and backflushing on fouling control and membrane cleaning [J]. Desalination, 2011, 266(1-3): 154-161.
[18] Liu X, Wang Y, Waite T D, et al. Numerical simulation of bubble induced shear inmembrane bioreactors: Effects of mixed liquor rheology and membrane configuration [J]. Water Research, 2015, 75: 131-145.
[19] Peng W, Zhang K, Gao W, et al. CFD modeling of hydrodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor [J]. J Membrane Sci, 2013, 445(41): 15-24.
[20] Xie F, Chen W W, Wang J M, et al. Fouling characteristics and enhancement mechanisms in a submerged flat-sheet membrane bioreactor equipped with micro-channel turbulence promoters with micro-pores [J]. J Membrane Sci, 2015, 495(12): 361-371.
[21] Liu X F, Wang Y, Waite T D, et al. Fluid Structure Interaction analysis of lateral fibre movement in submerged membrane reactors [J]. J Membrane Sci, 2016, 504: 240-250.
[22] Yang F, Bick A, Shandalov S, et al. Yield stress and rheological characteristics of activated sludge in an airlift membrane bioreactor [J]. J Membrane Sci, 2009, 334(1-2): 83-90.
[23] Faibish R S, Cohen Y. Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions [J]. J Membrane Sci, 2001, 185(2): 129-143.
[24] Kaya R, Deveci G, Turken T, et al. Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation [J]. Desalination, 2014, 351: 109-119.
[25] Santos J L C, Geraldes V, Velizarov S, et al. Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD) [J]. J Membrane Sci, 2007, 305(1-2): 103-117.
[26] Saeed A, Vuthaluru R, Vuthaluru H B. Investigations into the effects of mass transport and flow dynamics of spacer filled membrane modules using CFD [J]. Chem Eng Res Des, 2015, 93: 79-99.
[27] Koutsou C P, Karabelas A J. Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers [J]. J Membrane Sci, 2012, 399(5): 60-72.
[28] Kim K, Jung J Y, Kwon J H, et al. Dynamic microfiltration with a perforated disk for effective harvesting of microalgae [J]. J Membrane Sci, 2015, 475: 252-258.
[29] Chan C C V, Berube P R, Hall E R. Relationship between types of surface shear stress profiles and membrane fouling [J]. Water Research, 2011, 45(19): 6403-6416.
[30] Yamanoi I, Kageyama K. Evaluation of bubble flow properties between flat sheet membranes in membrane bioreactor [J]. J Membrane Sci, 2010, 360(1-2): 102-108.
[31] Khalili-Garakani A, Mehrnia M R, Mostoufi N, et al. Analyze and control fouling in an airlift membrane bioreactor: CFD simulation and experimental studies [J]. Process Biochem, 2011, 46(5): 1138-1145.
[32] Yeo A P S, Law A W K, Fane A G. The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry [J]. J Membrane Sci, 2007, 304(1-2): 125-137.
[33] Ye D, Saadat-Sanei S, Berube P R. Pulse bubble sparging for the control of hydraulically reversible fouling in submerged hollow fiber membrane systems [J]. Sep Purif Technol, 2014, 123(3): 153-163.
[34] Li T, Law A W K, Cetin M, et al. Fouling control of submerged hollow fibre membranes by vibrations [J]. J Membrane Sci, 2013, 427(1): 230-239.
[35] Ognier S, Wisniewski C, Grasmick A. Membrane fouling during constant flux filtration in membrane bioreactors [J]. Membrane Technology, 2002, 2002(7): 6-10.
[36] Tardieu E, Grasmick A, Geaugey V, et al. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment [J]. J Membrane Sci, 1999, 156(1): 131-140.
[37] Posp??Šil P, Wakeman R J, Hodgson I O A, et al. Shear stress-based modelling of steady state permeate flux in microfiltration enhanced by two-phase flows [J]. Chemical Engineering Journal, 2004, 97(2): 257-263.
[38] Defrance L, Jaffrin M Y. Reversibility of fouling formed in activated sludge filtration [J]. J Membrane Sci, 1999, 157(1): 73-84.
[39] Amokrane M, Sadaoui D, Koutsou C P, et al. A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination [J]. J Membrane Sci, 2015, 477: 139-150.
[40] Shakaib M, Hasani S M F, Mahmood M. CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels [J]. J Membrane Sci, 2009, 326(2): 270-284.
[41] Hughes D, Field R W. Crossflow filtration of washed and unwashed yeast suspensions at constant shear under nominally sub-critical conditions [J]. J Membrane Sci, 2006, 280(1): 89-98.
[42] Ahmed S, Seraji M T, Jahedi J, et al. Application of CFD for simulation of a baffled tubular membrane [J]. Chem Eng Res Des, 2012, 90(5): 600-608.
[43] Jankhah S, Berube P R. Pulse bubble sparging for fouling control [J]. Sep Purif Technol, 2014, 134: 58-65.
[44] Jankhah S, Berube P R. Power induced by bubbles of different sizes and frequencies on to hollow fibers in submerged membrane systems [J]. Water Res, 2013, 47(17): 6516-6526.
[45] Li T, Nagaoka H, Itonaga T, et al. Estimation of shear stress working on submerged vertically set hollow fibre membrane in MBRs [J]. J Water Supply Res T, 2010, 59(2-3): 191-197.
[46] Chan C C V, Berube P R, Hall E R. Shear profiles inside gas sparged submerged hollow fiber membrane modules [J]. J Membrane Sci, 2007, 297(1-2): 104-120.
[47] Ndinisa N V, Fane A G, Wiley D E, et al. Fouling Control in a Submerged Flat Sheet Membrane System: Part II—Two‐Phase Flow Characterization and CFD Simulations [J]. Separation Science & Technology, 2006, 41(7): 1411-1445.
[48] Berube P R, Afonso G, Taghipour F, et al. Quantifying the shear at the surface of submerged hollow fiber membranes [J]. J Membrane Sci, 2006, 279(1-2): 495-505.
[49] Drews A, Prieske H, Meyer E L, et al. Advantageous and detrimental effects of air sparging in membrane filtration: Bubble movement, exerted shear and particle classification [J]. Desalination, 2010, 250(3): 1083-1086.
[50] Martinelli L, Guigui C, Line A. Characterisation of hydrodynamics induced by air injection related to membrane fouling behaviour ☆ [J]. Desalination, 2010, 250(2): 587-591.
[51] Böhm L, Kraume M. Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems [J]. J Membrane Sci, 2015, 475: 533-544.
[52] Laborie S, Cabassud C, Durand-Bourlier L, et al. Fouling control by air sparging inside hollow fibre membranes - effects on energy consumption [J]. Desalination, 1998, 118(1-3): 189-196.
[53] Mattsson T, Lewis W J T, Chew Y M J, et al. In situ investigation of soft cake fouling layers using fluid dynamic gauging [J]. Food Bioprod Process, 2015, 93: 205-210.
[54] Lewis W J T, Chew Y M J, Bird M R. The application of fluid dynamic gauging in characterising cake deposition during the cross-flow microfiltration of a yeast suspension [J]. J Membrane Sci, 2012, 405(s 405–406): 113-122.
[55] Lister V Y, Lucas C, Gordon P W, et al. Pressure mode fluid dynamic gauging for studying cake build-up in cross-flow microfiltration [J]. J Membrane Sci, 2011, 366(1-2): 304-313.
[56] Abdullah S Z, Wray H E, Berube P R, et al. Distribution of surface shear stress for a densely packed submerged hollow fiber membrane system [J]. Desalination, 2015, 357: 117-120.
[57] Zhang K S, Cui Z F, Field R W. Effect of bubble size and frequency on mass transfer in flat sheet MBR [J]. J Membrane Sci, 2009, 332(1-2): 30-37.
[58] Nagaoka H, Tanaka A, Toriizuka Y. Measurement of effective shear stress working on flat-sheet membrane by air-scrabbling [J]. Membranes In Drinking And Industrial Water Production Iii, 2003, 3(5): 423-428.
[59] Sousa P, Soares A, Monteiro E, et al. A CFD study of the hydrodynamics in a desalination membrane filled with spacers [J]. Desalination, 2014, 349(5): 22-30.
[60] Lee Y K, Won Y J, Yoo J H, et al. Flow analysis and fouling on the patterned membrane surface [J]. J Membrane Sci, 2013, 427(427): 320-325.
[61] Liu X-F, Wang Y, Waite T D, et al. Numerical simulation of bubble induced shear in membrane bioreactors: Effects of mixed liquor rheology and membrane configuration [J]. Water Res, 2015, 75(0): 131-145.
[62] Choo K H, Lee C H. Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor [J]. Water Research, 1998, 32(11): 3387-3397.
[63] Vyas H K, Bennett R J, Marshall A D. Cake resistance and force balance mechanism in the crossflow microfiltration of lactalbumin particles [J]. J Membrane Sci, 2001, 192(1-2): 165-176.
[64] Zhang G L, Zhang J W, Wang L, et al. Fouling mechanism of low-pressure hollow fiber membranes used in separating nanosized photocatalysts [J]. J Membrane Sci, 2012, 389(389): 532-543.
[65] Ceron-Vivas A, Morgan-Sagastume J M, Noyola A. Intermittent filtration and gas bubbling for fouling reduction in anaerobic membrane bioreactors [J]. J Membrane Sci, 2012, 423(423-424): 136-142.
[66] Taheri A H, Sim L N, Haur C T, et al. The fouling potential of colloidal silica and humic acid and their mixtures [J]. J Membrane Sci, 2013, 433(1): 112-120.
[67] Lei J, Zhou J. Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors [J]. J Membrane Sci, 2006, 276(1): 168-177.
[68] Bae T H, Tak T M. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor [J]. J Membrane Sci, 2005, 264(1-2): 151-160.
[69] Wang Y, Gitis V, Lee J, et al. Effects of shear rate on biofouling of reverse osmosis membrane during tertiary wastewater desalination [J]. J Membrane Sci, 2013, 427(1): 390-398.
[70] Kromkamp J, Faber F, Schroen K, et al. Effects of particle size segregation on crossflow microfiltration performance: Control mechanism for concentration polarisation and particle fractionation [J]. J Membrane Sci, 2006, 268(2): 189-197.
[71] Liu Y, He G, Li B, et al. A comparison of cake properties in traditional and turbulence promoter assisted microfiltration of particulate suspensions [J]. Water Res, 2012, 46(8): 2535-2544.
[72] Ding A, Liang H, Li G B, et al. Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water [J]. J Membrane Sci, 2016, 510: 382-390.
[73] Vrouwenvelder J S, Buiter J, Riviere M, et al. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems [J]. Water Res, 2010, 44(3): 689-702.
[74] Du X, Liu X F, Wang Y, et al. Particle deposition on flat sheet membranes under bubbly and slug flow aeration in coagulation-microfiltration process: Effects of particle characteristic and shear stress [J]. J Membrane Sci, 2017, 541: 668-676.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号