O-MoS2改性PMIA疏松纳滤膜的制备 及其性能
作者:姜钦亮,王一雯,付尹宣,麦兆环,桂双林,韩飞
单位: 1.江西省科学院能源研究所,江西南昌 30096; 2.南昌大学 鄱阳湖环境与资源利用 教育部重点实验室 资源环境与化工学院,南昌330031
关键词: 聚间苯二甲酰间苯二胺;氧化二硫化钼;平板;疏松;纳滤膜
出版年,卷(期):页码: 2021,41(3):126-134

摘要:
 为考察氧化二硫化钼(O-MoS2)对聚间苯二甲酰间苯二胺(PMIA)膜结构和分离性能的影响,本研究采用相转化法制备了PMIA平板疏松纳滤膜,进行了O-MoS2添加量对膜的形貌结构,膜表面电势,分离性能及抗污染性能的影响分析。结果表明:与原始的PMIA膜相比,复合PMIA/O-MoS2膜表面光滑无缺陷;随着复合膜中O-MoS2含量由0w.t%增加至0.5wt.%,膜表面接触角由原始膜的61.8°降低至35.0°;复合膜表面的荷负电性能增强。纳滤实验结果表明,在O-MoS2质量分数为0.3 wt.%条件下制备的复合膜,在2bar操作压力下,纯水通量361.5 L/(m2·h)是原始膜通量的1.5倍。同时O-MoS2的添加增强了复合膜的抗污染性能,在染料废水处理等领域展现了潜在的应用前景。
 To investigate the effect of oxidized molybdenum disulfide (O-MoS2) on the membrane structure and separation performance of polyresorcinylene diamine (PMIA) membrane. In this study, the PMIA flat sheet loose nanofiltration membrane was prepared by using phase inversion method. Effect of O-MoS2 content on the morphology, surface zeta-potential, separation and pollution resistance characteristics of the resulted membranes were investigated in detail. The results showed that compared with the PMIA membrane, the surface of the composite PMIA/ O-MoS2 membrane was smooth without defects.; As the content of O-MoS2 in the composite membrane increased from 0wt. % to 0.5wt.%, the surface contact angle decreased from 61.8° of the PMIA membrane to 35.0°of the PMIA/ O-MoS2-4 membrane; The zeta potential on the composite membrane surface was enhanced. The nanofiltration experimental results showed that PMIA/O-MoS2 membrane (mass fraction of O-MoS2 is 0.3wt.%) showed a pure water flux of 361.5 L/(m2·h), 1.5 times that of the original membrane flux, under the operating pressure of 2bar. While the addition of O-MoS2 enhanced the anti-pollution performance of the composite membrane, and showed potential application prospects in dye wastewater treatment and other fields.
姜钦亮(1988-),男,江西南昌人,博士,助理研究员,主要从事膜材料的制备与膜分离,

参考文献:
 [1] X Kang, Y Y Cheng, Y Wen, et al. Bio-inspired co-deposited preparation of GO composite loose nanofiltration membrane for dye contaminated wastewater sustainable treatment[J]. J Hazard Mater, 2020, 400:123121.
[2] F Oulad, S Zinadini, A A Zinatizadeh, et al. Preparation and characterization of loose antifouling nanofiltration membrane using branched aniline oligomers grafted onto polyether sulfone and application for real algal dye removal[J]. Chem Eng J, 2020,401: 125861.
[3] 康旭, 程源元, 齐晶瑶. TA修饰GO-ZIF复合纳滤膜对染料MB的去除[J]. 环境科学学报, 2020, 40: 3666-3673.
[4] Y F Mi, N Wang, Q Qi, et al. A loose polyamide nanofiltration membrane prepared by polyether amine interfacial polymerization for dye desalination[J]. Sep Purif Technol, 2020, 248: 117079.
[5] C Bar, N Caglar, M Uz, et al. Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a pH and Temperature-Responsive Pentablock Co-Polymer[J]. Acs Appl Mater Inter, 2019, 11 :31367-31377.
[6] W Y Ye, R R Liu, X Y Chen, et al. Loose nanofiltration-based electrodialysis for highly efficient textile wastewater treatment[J]. J Membr Sci, 2020, 608: 118182.
[7] J C Ding, H Q Wu, P Y Wu, et al. Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation[J]. Chem Eng J, 2020, 396: 125199.
[8] Y Li, E Wong, Z H Mai, et al. Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination[J]. J Membr Sci, 2019, 592: 117396.
[9] 石紫, 王志, 王宠, 等. 染料分离有机纳滤膜制备技术研究进展[J]. 膜科学与技术, 2020, 40, 340-351.
[10] N Zhang, B Jiang, L H Zhang, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation[J]. Chem Eng J, 2019, 359, 1442-1452.
[11] X Wu, R W Field, J J Wu, et al. Polyvinylpyrrolidone modified graphene oxide as a modifier for thin film composite forward osmosis membranes[J]. J Membr Sci, 2017, 540: 251-260.
[12] W Zhang, W Cheng, E Ziemann, et al. Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties[J]. J Membr Sci, 2018, 565: 293-302.
[13] S Ayyaru, Y H Ahn. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes[J]. J Membr Sci, 2017, 525: 210-219.
[14] S S Yang, K S Zhang. Few-layers MoS2 nanosheets modified thin film composite nanofiltration membranes with improved separation performance[J]. J Membr Sci, 2020, 595: 117526.
[15] S Arefi-Oskoui, A Khataee, M Safarpou, et al. Modification of polyethersulfone ultrafiltration membrane using ultrasonic-assisted functionalized MoS2 for treatment of oil refinery wastewater[J]. Sep Purif Technol, 2020, 238: 116495.
[16] H Zhang, X Y Gong, W X Li, et al. Thin-film nanocomposite membranes containing tannic acid-Fe3+ modified MoS2 nanosheets with enhanced nanofiltration performance[J]. J Membr Sci, 2020, 616:118605.
[17] X P Wang, C Wu, T R Zhu, et al. The hierarchical flower-like MoS2 nanosheets incorporated into PES mixed matrix membranes for enhanced separation performance[J]. Chemosphere, 2020, 256 .
[18] S S Yang, Q L Jiang, K S Zhang. Few-layers 2D O-MoS2 TFN nanofiltration membranes for future desalination[J]. J Membr Sci, 2020, 604: 118052.
[19] Q L Jiang, H L Tian, K S Zhang, Enhanced performance of poly(m-phenylene isophthalamide) (PMIA) composite hollow fiber ultrafiltration membranes by O-MoS2 nanosheets modification[J]. Desal  Water Treat, 2019,166: 245-258.
[20] M Amini, S A A Ramazani, M Faghihi, et al. Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method[J]. Ultrason Sonochem, 2017,39 :188-196.
[21] 杨梅, 赵长伟, 杨彬, 等. 氧化石墨烯改性PMIA膜的制备及性能研究[J]. 水处理技术, 2017, 43(07): 125-129.
[22] X Liang, P H Wang, J Wang, et al. Zwitterionic functionalized MoS2 nanosheets for a novel composite membrane with effective salt/dye separation performance[J]. J Membr Sci, 2019, 573: 270-279.
[23] C E Lin, J Wang, M Y Zhou, et al. Poly(m-phenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes[J]. J Membr Sci, 2016, 518: 72-78.
[24] D Voiry, M Salehi, R Silva, et al. Chhowalla, Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction[J]. Nano Lett., 2013,13: 6222-6227.
[25] Y F Li, Y L Su, X T Zhao, et al. Antifouling, High-Flux Nanofiltration Membranes Enabled by Dual Functional Polydopamine[J]. Acs Appl Mater Inter, 2014, 6 : 5548-5557.
[26] T Y Ma, Y L Su, Y F Li, et al. Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer[J]. J Membr Sci, 2016, 503: 101-109.
[27] J Y Zhu, M M Tian, Y T Zhang, et al. Fabrication of a novel "loose" nanofiltration membrane by facile blending with Chitosan-Montmorillonite nanosheets for dyes purification[J]. Chem Eng J, 2015, 265: 184-193.
[28] Z Y Qiu, X F Ji, C J He, Fabrication of a loose nanofiltration candidate from Polyacrylonitrile/Graphene oxide hybrid membrane via thermally induced phase separation[J]. J Hazard Mater, 2018, 360: 122-131.
[29] Q Zhang, L Fan, Z Yang, et al. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles[J]. Appl Surf Sci, 2017, 410: 494-504.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号