改性ZIF90-Pebax混合基质膜的制备及CO2分离性能
作者:李东升,丁锐,那天成,阮雪华,姜晓滨,贺高红,肖武
单位: 大连理工大学精细化工国家重点实验室,膜科学与技术研究开发中心,辽宁 大连 116024
关键词: ZIF-90;CO2/N2分离;界面效应;混合基质膜
出版年,卷(期):页码: 2021,41(4):15-24

摘要:
 为解决MOFs基混合基质膜的一般问题,如掺杂剂存在的呼吸效应,聚合物与掺杂剂之间的界面效应等,本文以骨架结构极稳定的ZIF-90作为掺杂材料,随后通过后合成修饰(PSM)技术使用不同链长结构的胺烷对ZIF-90进行了表面修饰,并最终探究不同链长结构的改性剂及其用量对ZIF-90与其pebax基混合基质膜气体分离性能的影响。实验发现,胺烷的改性不仅不会改变ZIF-90的晶体结构,还能够在ZIF-90表面形成“绒毛”状结构,形成有机-有机高相容的界面。除此之外,该“绒毛”结构虽然会降低填料本身的比表面积及孔体积,但是在合适的长度与数量的情况下会与聚合物产生某种特殊的有益于气体分离的相互作用,可以明显提高混合基质膜的分离性能。使用正丙胺改性的PZ90/Pebax系列混合基质膜相较于纯ZIF-90/Pebax相比,CO2/N2选择性与CO2渗透性都有着不同程度的提高,其中在20%改性程度的情况下得到了最佳的分离性能,CO2/N2选择性为70,CO2渗透率达到了140 Barrer,与纯Pebax相比分别提高了45.8%和79.4%,接近2008年Robeson上限。
 In order to solve some general problems of the MOFs-based mixed matrix membrane, such as the breathing effect of the fillers, the interface effect between the polymer and the dopant, etc., this work used ZIF-90 which have extremely stable framework structure as the doping material, and then the fillers were modified by amines with different chain length structures by the means of post-synthetic modification (PSM). The influence of different chain length structures and their dosage on ZIF-90 and the gas separation performance of its Pebax-based mixed matrix membrane was explored. We found that the modification of amine alkanes not only does not change the crystal structure of ZIF-90, but can also forms a "fluff"-like structure on the surface of ZIF-90, which can form an organic-organic highly compatible interface. In addition, although the "fluff" structure will reduce the specific surface area and pore volume of the filler itself, it will cross-entangle the polymer chain to form a hardened layer with a large amount of free volume when the length and quantity are appropriate. Differ from amino-modified MOFs, the free volume in the hardened layer can also significantly improve the separation performance of the mixed matrix membrane. Compared with pure ZIF-90/Pebax, the PZ90/Pebax series mixed matrix membranes modified with n-propylamine have improved CO2/N2 selectivity and CO2 permeability. The best separation performance was obtained at 20% modification degree, its CO2/N2 selectivity is 70, and the CO2 permeability reached 140 Barrer, which was increased by 45.8% and 79.4% respectively compared with pure Pebax, and very close to the Robeson upper limit in 2008.
李东升(1996-),男,山东青岛人,硕士研究生,从事气体分离膜的研究,E-mail:845669309@qq.com

参考文献:
 [1] D. M. D’Alessandro et al. Carbon dioxide capture: prospects for new materials [J]. Angew Chem Int Ed Engl, 2010, 49: 6058-6082.
[2] 刘冰,姚杰,李丹,孙浩.[bmim][Tf_2N]@UiO-66-NH2/聚酰亚胺混合基质膜的制备及气体分离性能[J].膜科学与技术,2020,40(02):14-21+52.
[3] Li J-Y, Wang D K, Tseng H-H, et al. Solvent effects on diffusion channel construction of organosilica membrane with excellent CO2 separation properties [J]. J Membr Sci, 2021, 618: 118758.
[4] Liu Y, Wu H, Wu S, et al. Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation [J]. J Membr Sci, 2021, 618: 118693.
[5] Robeson L M. The upper bound revisited [J]. J Membr Sci, 2008, 320(1-2): 390-400.
[6] Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions [J]. Prog Polym Sci, 2014, 39(5): 817-861.
[7] Vinobal M, Bhagiyalakshmi M, Alqaheem Y, et al. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review [J]. Sep Purif Technol, 2017, 188: 431-450.
[8] Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks [J]. Chem Rev, 2012, 112(2): 673-674.
[9] Zhou S, Wei Y, Zhuang L, et al. Introduction of metal precursors by electrodeposition for the in situ growth of metal–organic framework membranes on porous metal substrates [J]. J Mater Chem A, 2017, 5(5): 1948-1951.
[10] Zhang M, Dai Q, Zheng H, et al. Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting [J]. Adv Mater, 2018, 30(10): 1705431.
[11] Jiao L, Wang Y, Jiang H L, et al. Metal-Organic Frameworks as Platforms for Catalytic Applications [J]. Adv Mater, 2018, 30(37): 1703663.
[12] Masih D, Cheernikova V, Shekhah O, et al. Zeolite-like Metal-Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing [J]. ACS Appl Mater Interfaces, 2018, 10(14): 11399-11405.
[13] Erucar I, Keskin S. Efficient Storage of Drug and Cosmetic Molecules in Biocompatible Metal Organic Frameworks: A Molecular Simulation Study [J]. Ind Eng Chem Res, 2016, 55(7): 1929-1939.
[14] Meshkat S, Kaliaguine S, Rodrigue D. Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation [J]. Sep Purif Technol, 2020, 235: 116150.
[15] Wang X, Chen J, Fang M, et al. ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution [J]. Sep Purif Technol, 2016, 163: 39-47.
[16] Gong Y, Gao S, Tian Y, et al. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination [J]. J Membr Sci, 2020, 600: 117874.
[17] Guo A, Ban Y, Yang K, et al. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation [J]. J Membr Sci, 2018, 562: 76-84.
[18] Shan M, Seoane B, Andres-Garcia E, et al. Mixed-matrix membranes containing an azine-linked covalent organic framework: Influence of the polymeric matrix on post-combustion CO2-capture [J]. J Membr Sci, 2018, 549: 377-384.
[19] 田洋洋,梁家晨,沈钦,王正宫,靳健.MOF基混合基质膜的界面设计及气体分离研究进展[J].膜科学与技术,2019,39(01):125-135.
[20] C Cheng Y, Ying Y, Zhai L, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation [J]. J Membr Sci, 2019, 573: 97-106.
[21] Kolokolov D I, Diestel L, Caro J, et al. Rotational and Translational Motion of Benzene in ZIF-8 Studied by 2H NMR: Estimation of Microscopic Self-Diffusivity and Its Comparison with Macroscopic Measurements [J]. J Phys Chem C, 2014, 118(24): 12873-12879.
[22] Zheng B, Fu F, Wang L L, et al. Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90 [J]. J Phys Chem C, 2018, 122(13): 7203-7209.
[23] Fang M, Wu C, Yang Z, et al. ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation [J]. J Membr Sci, 2015, 474(103-13.
[24] Wang Z, Cohen S M. Postsynthetic modification of metal-organic frameworks [J]. Chem Soc Rev, 2009, 38(5): 1315-1329.
[25] Mubashir M, Yeong Y F, Lau K K, et al. Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes [J]. Sep Purif Technol, 2018, 199(140-51.
[26] Song C, Li R, Fan Z, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation [J]. Sep Purif Technol, 2020, 238: 116500.
[27] Tien-Binh N, Rodrigue D, Kaliaguine S. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control [J]. J Membr Sci, 2018, 548: 429-438.
[28] Zhang H, Wang Y. Poly(vinyl alcohol)/ZIF-8-NH2mixed matrix membranes for ethanol dehydration via pervaporation [J]. AIChE J, 2016, 62(5): 1728-1739.
[29] Zhang H-F, Li M, Wang X-Z, et al. Fine-tuning metal–organic framework performances by spatially-differentiated postsynthetic modification [J]. J Mater Chem A, 2018, 6(10): 4260-4265.
[30] Xu S, Zhang H, Yu F, et al. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90 [J]. Sep Purif Technol, 2018, 206: 80-89.
[31] Silvestre-Albero A M, Juárez-Galán J M, Silvestre-Albero J, et al. Low-Pressure Hysteresis in Adsorption: An Artifact? [J]. J Phys Chem C, 2012, 116(31): 16652-16655.
[32] Ding R, Zheng W, Yang K, et al. Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation [J]. Sep Purif Technol, 2020, 236: 116209.
[33] Sarmadi R, Salimi M, Pirouzfar V. The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal-organic frameworks to modify the morphology and performance of Pebax(R)1657-based gas separation membranes for CO2 capture applications [J]. Environ Sci Pollut Res Int, 2020, 27(32): 40618-40632.
[34] Shen J, Liu G, Huang K, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture [J]. Angew Chem Int Ed Engl, 2015, 54(2): 578-582.
[35] Li H, Tuo L, Yang K, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid [J]. J Membr Sci, 2016, 511: 130-142.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号