用于电镀废水处理的膜技术研究进展 |
作者:张艳红1,2,刘伟京1,尤本胜1,崔朝亮2,邢卫红2 |
单位: 1 江苏省环境科学研究院 江苏省环境工程重点实验室,江苏 南京,210036; 2南京工业大学 国家特种分离膜工程技术研究中心,江苏 南京,210009 |
关键词: 电镀废水;重金属;膜技术;改性膜;分离 |
DOI号: |
分类号: X592 |
出版年,卷(期):页码: 2021,41(4):147-153 |
摘要: |
电镀废水排放量大、成分复杂,废水中的重金属离子对生物体的毒害大,膜技术因处理效果好、适应性强,成为电镀废水无害化高效处理的先进技术。本文概述了反渗透、纳滤、电渗析等常规脱盐膜技术在电镀废水处理中的研究现状,着重介绍了强化超滤、超/微滤膜本体改性、共混改性方法以及膜表面改性的应用特性,剖析了其结构设计与重金属去除性能的关系,指出了具有重金属吸附性能的复合膜发展方向,为电镀废水的深度处理膜技术的选用提供指导,对促进新型膜技术的发展具有重要参考意义。 |
Electroplating wastewater has a large discharge and complex composition, which is toxic to organisms for the co-existing heavy metal ions. Membrane technology has been one of the advanced technologies in the harmless treatment of electroplating wastewater for its high treatment efficiency and strong adaptability. This paper summarized research status of desalting membrane technologies in the treatment of electroplating wastewater, such as reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED). The application characteristic of strengthen process, bulk modification, blending modification and surface modification of UF/MF were emphatically introduced. The relationship between the structure design and the performance of the removal of heavy metals was also analyzed. The development direction of composite membrane applied in adsorption of heavy metals was outlined, which provides guidance for the selection of membrane technology in deep treatment of electroplating wastewater and show great significance in promoting the development of new membrane technology. |
基金项目: |
中国博士后科学基金面上资助项目(2020M681523),国家自然科学基金创新研究群体项目(21921006)。 |
作者简介: |
张艳红(1992-),女,江苏丹阳人,博士,工程师,从事水污染控制研究和环境功能材料研发 |
参考文献: |
[1] SONG L, FENG Y, ZHU C, et al. Enhanced synergistic removal of Cr(VI) and Cd(II) with bi-functional biomass-based composites[J]. J Hazard Mater, 2020, 388: 121776. [2] 漆麟, 汪滨, 王娇娜, 等. 层层组装法制备[CTS/SA]c/lPET纳米纤维膜及动态吸附Cu2+[J]. 膜科学与技术, 2017, 01: 75-80. [3] YUAN Y, ZHAO W, LIU Z, et al. Low-Fe(III) driven UV/Air process for enhanced recovery of heavy metals from EDTA complexed system[J]. Water Res, 2020, 171: 115375. [4] 付丽霞, 李瑞贤, 李洪瑞, 等. 改进型铁碳微电解设备预处理络合铜废水[J]. 工业水处理, 2019, 39(01): 53-57. [5] ZHANG Y H, LIU F Q, ZHU C Q, et al. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application[J]. J Hazard Mater, 2017, 329: 290-298. [6] 符丽纯, 戴建军, 陈利芳, 等. 基于树脂吸附的电镀废水深度处理工程实例[J]. 水处理技术, 2018, 44(01): 128-131. [7] ZHANG Y, LIU F, JI C, et al. TAP/GMA@CN metal-chelating membrane for enhanced and efficient capture of Cu(II)[J]. J Membr Sci, 2019, 570-571: 362-370. [8] 冉子寒, 张宇峰, 顾瑞之, 等. “化学沉淀-超滤”组合工艺处理焦磷酸盐镀铜废水的研究[J]. 膜科学与技术, 2020, 40(02): 6-13. [9] 袁冉冉, 刘福强, 张艳红, 等. 高效去除重金属的改性聚合物膜研究进展[J]. 化工环保, 2019, 02: 115-121. [10] 李昆. 膜分离技术在含铜废水资源化利用中的研究进展[J]. 中国资源综合利用, 2020, 38(07): 119-121. [11] 陈爱涛. 论述膜技术在电子工业废水处理中的运用[J]. 工程建设与设计, 2019, (17): 138-139. [12] ANIS S F, LALIA B S, HASHAIKEH R, et al. Breaking through the selectivity-permeability tradeoff using nano zeolite-Y for micellar enhanced ultrafiltration dye rejection application[J]. Sep Purif Technol, 2020, 242: 116824. [13] CHEN M, JAFVERT C T, WU Y, et al. Inorganic anion removal using micellar enhanced ultrafiltration (MEUF), modeling anion distribution and suggested improvements of MEUF: A review[J]. Chem Eng J, 2020, 398: 125413. [14] AZAD H, MOHSENNIA M. A novel free-standing polyvinyl butyral-polyacrylonitrile/ZnAl-layered double hydroxide nanocomposite membrane for enhanced heavy metal removal from wastewater[J]. J Membr Sci, 2020, 615: 118487. [15] MOLINARI R, POERIO T, ARGURIO P. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation–ultrafiltration process[J]. Chemosphere, 2008, 70(3): 341-348. [16] LI Y, SIM L N, HO J S, et al. Integration of an anaerobic fluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverse osmosis (RO) for municipal wastewater reclamation: Comparison with an anoxic-aerobic MBR coupled with RO[J]. Chemosphere, 2020, 245: 125569. [17] 朱亮. TFS-OF+RO工艺处理重金属工业废水工程应用[J]. 工业水处理, 2018, 38(08): 98-101. [18] 张耀辉, 周亮, 徐军, 等. UF-RO-NF应用于电镀镍漂洗废水回用中试研究[J]. 污染防治技术, 2020, 33(01): 13-15+60. [19] 李新冬, 代武川, 袁佳彬, 等. 纳滤膜分离技术处理饮用水研究进展[J]. 应用化工, 2018, 47(08): 1767-1771. [20] 宋吉锋, 谢思宇, 郑华安, 等. 海上纳滤水处理技术研究与应用[J]. 工业水处理, 2019, 39(02): 86-88+105. [21] JIA T Z, LU J P, CHENG X Y, et al. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes[J]. J Membr Sci, 2019, 580: 214-223. [22] FIGOLI A, CASSANO A, CRISCUOLI A, et al. Influence of operating parameters on the arsenic removal by nanofiltration[J]. Water Res, 2010, 44(1): 97-104. [23] HE M, GAO K, ZHOU L, et al. Zwitterionic materials for antifouling membrane surface construction[J]. Acta Biomate, 2016, 40: 142-152. [24] VENAULT A, CHANG Y, YANG H-S, et al. Surface self-assembled zwitterionization of poly(vinylidene fluoride) microfiltration membranes via hydrophobic-driven coating for improved blood compatibility[J]. J Membr Sci, 2014, 454: 253-263. [25] YUE W-W, LI H-J, XIANG T, et al. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility[J]. J Membr Sci, 2013, 446: 79-91. [26] HE Y, LIU J, HAN G, et al. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal[J]. J Membr Sci, 2018, 555: 299-306. [27] LUO T, ABDU S, WESSLING M. Selectivity of ion exchange membranes: A review[J]. J Membr Sci, 2018, 555: 429-454. [28] THAKUR A K, MANOHAR M, SHAHI V K. Controlled metal loading on poly(2-acrylamido-2-methyl-propane-sulfonic acid) membranes by an ion-exchange process to improve electrodialytic separation performance for mono-/bi-valent ions[J]. J Mater Chem A, 2015, 3(35): 18279-18288. [29] 王鑫, 陆俊其, 葛亮, 等. HPW@MIL-101掺杂的混合基质膜制备及其离子分离性能研究[J]. 膜科学与技术, 2020, 40(01): 100-109. [30] YANG Y, XU W Q, ZHANG F, et al. Preparation of highly stable porous SiC membrane supports with enhanced air purification performance by recycling NaA zeolite residue[J]. J Membr Sci, 2017, 541: 500-509. [31] WANG Y Q, CHEN L, XU Z Y, et al. A novel ultralight 3D-Mn(OH)(4) porous material for heavy metal ions removal from water[J]. Sep Purif Technol, 2020, 238: 11. [32] BOLISETTY S, MEZZENGA R. Amyloid–carbon hybrid membranes for universal water purification[J]. Nat Nanotechnol, 2016, 11(4): 365-371. [33] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): [34] CHEN C, WANG J, LIU D, et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation[J]. Nat Commun, 2018, 9(1): 1902. [35] SUN Y Q, LI S L, ZHUANG Y X, et al. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection[J]. J Membr Sci, 2019, 591: 11. [36] LI C, LIU C, YEN W. Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions[J]. Chemosphere, 2006, 63(2): 353-358. [37] POOKROD P, DUNGKAEW W, UN-ARN P, et al. Polyelectrolyte-enhanced ultrafiltration (PEUF) process for low level arsenic removal: recovery of polyelectrolyte from retentate stream[J]. Adv. Mater Res. 2012, 1768: 27-30. [38] 徐方松, 邢卫红, 张峰, 等. 胶束增强陶瓷膜处理镧离子废水的研究[J]. 膜科学与技术, 2015, 35(02): 57-63. [39] SCHWARZE M, GROSS M, MORITZ M, et al. Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate[J]. J Membr Sci, 2015, 478: 140-147. [40] HUANG Y, DU J, ZHANG Y, et al. Batch process of polymer-enhanced ultrafiltration to recover mercury (II) from wastewater[J]. J Membr Sci, 2016, 514: 229-240. [41] 王岩. 胶团强化超滤法(MEUF)去除废水中苯胺的研究[J]. 工程建设与设计, 2017, (12): 111-112. [42] 张志彬, 游少鸿, 刘征, 等. 鼠李糖脂胶团强化超滤处理含铅废水研究[J]. 工业安全与环保, 2016, 42(09): 7-10+21. [43] JIA T-Z, LU J-P, CHENG X-Y, et al. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes[J]. J Membr Sci, 2019, 580: 214-223. [44] DARAEI P, MADAENI S S, GHAEMI N, et al. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water[J]. J Membr Sci, 2012, 415-416: 250-259. [45] PAN S L, LI J S, NOONAN O, et al. Dual-functional ultrafiltration membrane for simultaneous removal of multiple pollutants with high performance[J]. Environ Sci Technol, 2017, 51(9): 5098-5107. [46] LI T, ZHANG W, ZHAI S, et al. Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane[J]. Water Res, 2018, 143: 87-98. [47] ZHANG Y, XU X, YUE C, et al. Insight into the efficient co-removal of Cr(VI) and Cr(III) by positively charged UiO-66-NH2 decorated ultrafiltration membrane[J]. Chem Eng J, 2021, 404: 126546. [48] NAYAK V, JYOTHI M S, BALAKRISHNA R G, et al. Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample[J]. J Hazard Mater, 2017, 331: 289-299. [49] ZHANG L, ZHAO Y-H, BAI R. Development of a multifunctional membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: Application to cadmium[J]. J Membr Sci, 2011, 379(1): 69-79. [50] YOO H, KWAK S Y. Surface functionalization of PTFE membranes with hyperbranched poly (amidoamine) for the removal of Cu2+ ions from aqueous solution[J]. J Membr Sci, 2013, 448: 125-134. [51] 赵晓画, 赵晓燕, 王铭, 等. PVA-CS/PHBV复合膜制备及其性能研究[J]. 膜科学与技术, 2014, 34(03): 63-68. [52] ZHANG Q D, LIU N, CAO Y Z, et al. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater[J]. Appl Surf Sci, 2018, 434: 57-62. [53] SHAO L, WANG Z X, ZHANG Y L, et al. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate[J]. J Membr Sci, 2014, 461: 10-21. [54] ABDI G, ALIZADEH A, ZINADINI S, et al. Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid[J]. J. Membr. Sci., 2018, 552: 326-335. [55] WANG Z, XU L, QI C, et al. Fabrication of MWCNTs-polysulfone composite membranes and its application in the removal of bisphenol A[J]. Mater. Res. Express, 2018, 5: 065101. [56] ZHANG Y, LIU F, JI C, et al. TAP/GMA@CN metal-chelating membrane for enhanced and efficient capture of Cu(II)[J]. J. Membr. Sci., 2019, 570-571: 362-370. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号