一种抗污染/自清洁的双向油水乳液分离温敏膜 |
作者:井兰溪,谢锐,巨晓洁,汪伟,刘壮,潘大伟,褚良银 |
单位: 四川大学 化学工程学院,成都 610065 |
关键词: 蜂窝状结构;油水乳液分离;温敏膜;抗污染;自清洁 |
出版年,卷(期):页码: 2023,43(5):1-11 |
摘要: |
以聚偏氟乙烯(PVDF)为基膜,通过原位聚合和蒸气诱导相分离法(VIPS)引入亲水聚N-异丙基丙烯酰胺(PNIPAM)和聚甲基丙烯酸羟乙酯(PHEMA),成功制备了一种抗污染/自清洁的双向油水乳液分离温敏膜。系统研究了单体质量比对膜微观结构、化学成分、表面浸润性、油水分离性能的影响,以牛血清白蛋白(BSA)为模型蛋白分子考察了膜的抗污染性能及自清洁性能。结果表明,当单体质量比为2.5: 0.5时,膜表面呈现出均匀的蜂窝状微纳米结构,表现出优异的双亲/液下超双疏性,水下油接触角和油下水接触角分别为151.1º和152.8º,对水包大豆油和大豆油包水乳液的渗透率分别为3258.4 L/(m2·h·bar)和108.3 L/(m2·h·bar),分离效率均在99.55%以上。其在20 ºC和50 ºC下对1 g/L的BSA溶液的静态吸附量仅为35.8 μg/cm2,通过交替使用50 ºC/20 ºC纯水对污染的膜进行清洁,其通量恢复率和不可逆污染率分别为99.0%和1.0%。上述研究结果为抗污染/自清洁双向油水乳液分离膜的创新设计和制备提供了新思路。 |
An anti-fouling and self-cleaning thermo-responsive membrane is successfully prepared for emulsified oil-water separation by introducing hydrophilic poly(N-isopropylacrylamide) (PNIPAM) and polyhydroxyethyl methacrylate (PHEMA) into membrane matrix polyvinylidene fluoride (PVDF) via in situ polymerization and vapor-induced phase separation (VIPS). The effects of the monomer mass ratio on the microstructure, chemical composition, surface wettability and oil-water separation performance of the thermo-responsive membranes are systematically investigated, and their anti-fouling and self-cleaning performances against model protein molecules bovine serum albumin (BSA) are examined. The results show that when the mass ratio is 2.5: 0.5, the membrane surface is provided with uniform honeycomb micro/nanostructures and excellent amphiphilic/dual superlyophobic characteristics; the oil underwater contact angle and water underoil contact angle of such a membrane are 151.1º and 152.8º, respectively; the separation permeabilities of soybean oil-in-water and water-in-soybean oil emulsions are 3258.4 L/(m2·h·bar) and 108.3 L/(m2·h·bar), respectively, with separation efficiencies are both above 99.55%. The static adsorption contents of 1 g/L BSA solution at 20 ºC and 50 ºC are merely 35.8 μg/cm2, and the flux recovery and irreversible fouling rate are 99.0% and 1.0%, respectively, by alternative cleaning the fouling membranes with purified water at 50 ºC/20 ºC. The above-mentioned results provide a new strategy for the design and construction of the anti-fouling and self-cleaning membrane for emulsified oil-water separation. |
井兰溪(1998-),女,陕西渭南人,硕士研究生,研究方向为膜材料与膜过程,E-mail: jinglanxi@stu.scu.edu.cn |
参考文献: |
[1]Walker A H. Oil spills and risk perceptions[M]//Boston: Gulf Professional Publishing, 2017. [2]中华人民共和国国家质量监督检验检疫总局, GB/T 31962-2015, 污水排入城镇下水道水质标准[S]. 北京: 中国标准出版社, 2015. [3]Kulkarni M G, Dalai A K. Waste cooking oil-an economical source for biodiesel: A review[J]. Ind Eng Chem Res, 2006, 45(9): 2901-2913. [4]秦佳旺, 谢锐, 巨晓洁, 等. 支撑层强化聚偏氟乙烯复合膜的表面浸润性及油水分离性能研究[J]. 膜科学与技术, 2021, 41(5): 26-34. [5]徐志康. 高性能分离膜材料[M]//北京: 中国铁道出版社, 2017. [6]Zhao Q, Xie R, Luo F, et al. Preparation of high strength poly(vinylidene fluoride) porous membranes with cellular structure via vapor-induced phase separation[J]. J Membr Sci, 2018, 549: 151-164. [7]Tao M M, Xue L X, Liu F, et al. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Adv Mater, 2014, 26(18): 2943-2948. [8]Liao Y, Tian M, Wang R. A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure[J]. J Membr Sci, 2017, 543: 123-132. [9]Li J, Zhao Z, Li D, et al. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation[J]. Nanoscale, 2017, 9(36): 13610-13617. [10]Kang Y, Jiao S, Wang B, et al. PVDF-modified TiO2 nanowires membrane with underliquid dual superlyophobic property for switchable separation of oil-water emulsions[J]. ACS Appl Mater Interfaces, 2020, 12(36): 40925-40936. [11]Xiang Y, Shen J, Wang Y, et al. A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water[J]. RSC Adv, 2015, 5(30): 23530-23539. [12]Sutrisna P D, Kurnia K A, Siagian U W R, et al. Membrane fouling and fouling mitigation in oil–water separation: A review[J]. J Environ Chem Eng, 2022, 10(3): 107532. [13]Ye Y, Huang J, Wang X. Fabrication of a self-cleaning surface via the thermosensitive copolymer brush of P(NIPAAm-PEGMA)[J]. ACS Appl Mater Interfaces, 2015, 7(40): 22128-22136. [14]Zhao Y, Wen J, Sun H, et al. Thermo-responsive separation membrane with smart anti-fouling and self-cleaning properties[J]. Chem Eng Res Des, 2020, 156: 333-342. [15]Vanangamudi A, Dumée L F, Ligneris E D, et al. Thermo-responsive nanofibrous composite membranes for efficient self-cleaning of protein foulants[J]. J Membr Sci, 2019, 574: 309-317. [16]曾崇阳, 谢锐, 巨晓洁, 等. 共混改性法制备高性能聚砜温敏膜[J]. 膜科学与技术, 2020, 40(06): 14-21. [17]Luo F, Xie R, Liu Z, et al. Smart gating membranes with in situ self-assembled responsive nanogels as functional gates. Sci Rep, 2015, 5: 14708. [18]Chen C, Tang L, Liu B C, et al. Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux[J]. J Membr Sci, 2015, 487: 1-11. [19]Wang J, He B, Ding Y, et al. Beyond superwetting surfaces: Dual-scale hyperporous membrane with rational wettability for “nonfouling” emulsion separation via coalescence demulsification[J]. ACS Appl Mater Interfaces, 2021, 13(3): 4731-4739. [20]Wang F, Altschuh P, Ratke L, et al. Progress report on phase separation in polymer solutions[J]. Adv Mater, 2019, 31(26): 1806733. [21]Li X Y, Xie R, Luo F, et al. CO2-responsive poly(N,N-dimethylaminoethyl methacrylate) hydrogels with fast responsive rate[J]. J Taiwan Inst Chem Eng, 2019, 94: 135-142. [22]Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem, 1936, 28(8): 988-994. [23]Solomon B R, Hyder M N, Varanasi K K. Separating oil-water nanoemulsions using flux-enhanced hierarchical membranes[J]. Sci Rep, 2014, 4(1): 5504. [24]Reay D A, Kew P A, Mcglen R J. Heat transfer and fluid flow theory[M]//Oxford: Butterworth-Heinemann, 2014 [25]Tao M M, Liu F, Xue L X. Hydrophilic poly(vinylidene fluoride) (PVDF) membrane by in situ polymerisation of 2-hydroxyethyl methacrylate (HEMA) and micro-phase separation[J]. J Mater Chem, 2012, 22(18): 9131-9137. [26]Sharma L G, Pandey L M. Thermomechanical process induces unfolding and fibrillation of bovine serum albumin[J]. Food Hydrocoll, 2021, 112: 106294. [27]Dong D, Zhu Y, Fang W, et al. Double-defense design of super-anti-fouling membranes for oil/water emulsion separation[J]. Adv Funct Mater, 2022, 32(24): 2113247. [28]Xu D, Zheng J, Zhang X, et al. Mechanistic insights of a thermoresponsive interface for fouling control of thin-film composite nanofiltration membranes[J]. Environ Sci Technol, 2022, 56(3): 1927-1937. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号