|
Preparation and characterization of PVA-mCNT/PTFE hollow fiber Janus membrane for membrane distillation |
| Authors: LIU Yi,LIU Xinyang,JIANG Lanying, JAAFAR Juhana |
| Units: 1.School of Metallurgy and Environment, Central South University, Changsha 410083,China; 2. National Center for the Control of Heavy Metal Pollution, Changsha 410083, China; 3. Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; 4. Malaysian Centre for Advanced Membrane Technology and Research, Johor Bahru 81310, Malaysia |
| KeyWords: carbon nanotube; hollow fiber Janus membrane; membrane distillation; desalination; anti-oil fouling |
| ClassificationCode:号: TQ028; X703.1 |
| year,volume(issue):pagination: 2025,45(5):51-65 |
|
Abstract: |
|
Hollow fiber Janus membranes with polyvinyl alcohol (PVA) and carboxylated multi-walled carbon nanotubes (mCNTs) composite material as hydrophilic layer was fabricated via deposition of mCNT on the surface of poly tetrafluoroethylene (PTFE) hydrophobic membrane by vacuum filtration, followed with PVA coating and glutaraldehyde (GA) crosslinking. Regarding PVA-mCNT composite layer, scanning electron microscope (SEM) revealed that it was dense with a thickness of 70~80 μm and a rough outer surface; Fourier transform infrared spectrometer (FTIR) proved its chemical structure and occurrence of crosslinking; and contact angle indicated its hydrophilicity. In direct contact membrane distillation (DCMD) operation treating 3.5% (mass fraction) NaCl aqueous solution, PVA-mCNT/PTFE membrane had a average flux of 7.09 kg/(m2·h), which was slightly higher than those of PVA/PTFE composite membrane and PTFE substrate. All the membranes had an original desalination rate higher than 99.9%; in the latter half of the test, however, desalination rate of Janus membranes were reduced to be lower than that of PTFE substrate. In DCMD treating saline containing 500 μL/L soybean oil, PTFE substrate lost its flux on the 1st day after 4 h. Whereas, for PVA/PTFE and PVA-mCNT/PTFE composite membranes, their flux reached zero on the 2nd and 3rd day, respectively. All the flux reduction were accompanied with deteriorating desalination rate. |
|
Funds: |
| 国家自然科学基金重点项目(52534005); 湖南省教育厅重点项目(22A0003) |
|
AuthorIntro: |
| 刘忆(2000-),女,湖南常德人,硕士研究生,主要研究方向为膜蒸馏 |
|
Reference: |
|
[1]Ismail A F, Matsuura T. Membrane separation processes theories, problems, and solutions[M]// Amsterdam: Elsevier, 2021. [2]Choi P J, Lee J, Jang A. Interconnection between renewable energy technologies and water treatment processes[J]. Water Res, 2025, 261: 122037. [3]Jiang L Y, Li N. Membrane-based separation in metallurgy: Principles and applications[M]// Amsterdam: Elsevier, 2016. [4]Alenezi A, Alabaiadly Y. Emerging technologies in water desalination: A review and future outlook[J]. Energy Nexus, 2025, 17: 100373. [5]Patel R V, Yadav A, Shahi V K, et al. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities[J]. Sci Total Environ, 2025, 969: 178749. [6]Liu H B, Li B, Guo L W, et al. Current and future use of membrane technology in the traditional Chinese medicine industry[J]. Sep Purif Rev, 2021, 51(4): 484-502. [7]王超, 赵一, Muhammad Mujahid, 等. 面向膜蒸馏的抗润湿、抗污染、抗结垢新型膜研究进展[J]. 膜科学与技术, 2024, 44(1): 157-167. [8]Guo Q, Huang Y, Xu M D, et al. PTFE porous membrane technology: A comprehensive review[J]. J Membr Sci, 2022, 664: 121115. [9]Gontarek-Castro E, Castro-Muoz R, Lieder M. New insights of nanomaterials usage toward super- hydrophobic membranes for water desalination via membrane distillation: A review[J]. Crit Rev Env Sci Tec, 2021, 52(12): 2104-2149. [10]陈慧敏, 刘公平, 金万勤. 面向膜蒸馏的全疏膜研究进展[J]. 膜科学与技术, 2023, 43(1): 1-12. [11]解保雷, 史志伟, 高永钢. 双疏膜膜蒸馏处理含有机溶剂废水的研究[J]. 膜科学与技术, 2024, 44(1): 130-136. [12]Afsari M, Shon H K, Tijing L D. Janus membranes for membrane distillation: Recent advances and challenges[J]. Adv Colloid Interfac, 2021, 289: 1-22. [13]张兴振, 靳健, 朱玉长. 非对称浸润性Janus膜的制备及应用进展[J]. 膜科学与技术, 2023, 43(3): 148-157. [14]Tang M, Hou D Y, Ding C L, et al. Anti-oil-fouling hydrophobic-superoleophobic composite membranes for robust membrane distillation performance[J]. Sci Total Environ, 2019, 696: 1-14. [15]Lou M M, Fang X F, Liu Y B, et al. Robust dual-layer Janus membranes with the incorporation of polyphenol/Fe3+ complex for enhanced anti-oil fouling performance in membrane distillation[J]. Desalination, 2021, 515: 115184. [16]Chen Y M L, Lu K J, Gai W X, et al. Nanofiltration-inspired Janus membranes with simultaneous wetting and fouling resistance for membrane distillation[J]. Enviro Sci Technol, 2021, 55(11): 7654-7664. [17]Li B, Hou D Y, Li C L, et al. Mussels-inspired design a carbon nanotube based underwater superoleophobic/hydrophobic Janus membrane with robust anti-oil-fouling for direct contact membrane distillation[J]. Sep Purif Technol, 2022, 294: 121163. [18]Han M Y, Dong T, Hou D Y, et al. Carbon nanotube based Janus composite membrane of oil fouling resistance for direct contact membrane distillation[J]. J Membr Sci, 2020, 607: 118078. [19]Yan K K, Jiao L, Lin S S, et al. Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation[J]. Desalination, 2018, 437: 26-33. [20]李明, 孙扬, 王聪, 等. 一步法制备Janus中空纤维膜及其膜蒸馏性能研究[J]. 膜科学与技术, 2022, 42(3): 32-40. [21]Yang H C, Zhong W W, Hou J W, et al. Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation[J]. J Membr Sci, 2017, 523: 1-7. [22]Yang G, Ng D, Huang Z, et al. Janus hollow fibre membranes with intrusion anchored structure for robust desalination and leachate treatment in direct contact membrane distillation[J]. Desalination, 2023, 551: 116423. [23]Feng X, Jiang L Y, Song Y. Titanium white sulfuric acid concentration by direct contact membrane distillation[J]. Chem Eng J, 2016, 285: 101-111. [24]Hu B, Ouyang J T, Jiang L Y. Influence of flocculant polyacrylamide on concentration of titanium white waste acid by direct contact membrane distillation[J]. Chinese J Chem Eng, 2020, 28(9): 2483-2496. [25]Guo H, Zhang D, Jiang L Y. PAN/PVA composite nanofibrous membranes for separating oil-in-water emulsion[J]. J Polym Res, 2022, 29: 108. [26]Lai Y J, Oh P C, Chew T L, et al. Surface repellency beyond hydrophobicity: A review on the latest innovations in superomniphobic surfaces[J]. Acs Omega, 2025, 10(6): 5172-5192. [27]Gong L, Zhang J W, Wang W D. Ion-specific effect on self-cleaning performances of polyelectrolyte-functionalized membranes and the underlying nanomechanical mechanism[J]. J Membr Sci, 2021, 634: 119408. [28]伊斯雷尔奇维利 J N. 分子间力和表面力[M]//王晓琳, 唐元晖,卢滇楠, 译.北京: 科学出版社, 2014. [29]Ali N, Bilal M, Khan A, et al. Engineered hybrid materials with smart surfaces for effective mitigation of petroleum-originated pollutants[J]. Engineering, 2021, 7(10): 1492-1503. [30]Hu S Y, Zhang Y, Lawless D, et al. Composite membranes comprising of polyvinylamine-poly(vinyl alcohol) incorporated with carbon nanotubes for dehydration of ethylene glycol by pervaporation[J]. J Membr Sci,2012,417/418: 34-44. [31]李志强, 吕娜, 蒋兰英. 商业正渗透膜的改性及其用于处理焦化废水的研究[J]. 化工学报, 2020, 71(S1): 461-470. [32]Jiang Z W, Karan S, Livingston A G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis[J]. Adv Mater, 2018, 30(15): 170593. [33]Saliba S, Ruch P, Volksen W, et al. Combined influence of pore size distribution and surface hydrophilicity on the water adsorption characteristics of micro-and mesoporous silica[J]. Micropor Mesopor Mat, 2016, 226: 221-228. [34]Tang C Y, Zhang Q, Wang K, et al. Water transport behavior of chitosan porous membranes containing multi-walled carbon nanotubes (MWNTs)[J]. J Membr Sci, 2009, 337(1/2): 240-247. [35]Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. [36]詹志刚, 肖金生, 罗志平, 等. PEMFC中水的饱和蒸汽压力与其中多孔介质特征关系研究[J]. 武汉理工大学学报, 2005, 5: 727-730. [37]Goh S W, Zhang Q Y, Zhang J S, et al. Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process[J]. J Membr Sci, 2013, 438: 140-152. [38]Wei Q, Yang D.A self-healing polyvinyl alcohol-based composite with high thermal conductivity and excellent mechanical properties[J]. Compos Commun,2023,39: 101561. [39]Yang S Y, Ma C C M, Teng C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites[J]. Carbon, 2010, 48(3): 592-603. [40]Samani M K, Khosravian N, Chen G C K, et al. Thermal conductivity of individual multiwalled carbon nanotubes[J]. Int J Therm Sci, 2012, 62(S1): 40-43. [41]Han Z D, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Prog Polym Sci, 2011, 36(7): 914-944. [42]Zhu L, Li H, Yin Y Y, et al. One-step synthesis of a robust and anti-oil-fouling biomimetic cactus-like hierarchical architecture for highly efficient oil/water separation[J]. Environ Sci-Nano, 2020, 7: 903-911. [43]Ben-Amotz D. Water-mediated hydrophobic interactions[J]. Annu Rev Phys Chem, 2016, 67(1): 617. [44]Zhang X H, Wei C J, Ma S Y. Janus poly(vinylidene fluoride) - graft - (TiO2 nanoparticles and PFDS) membranes with loose architecture and asymmetric wettability for efficient switchable separation of surfactant-stabilized oil/water emulsions[J]. J Membr Sci, 2021, 640: 119837. |
|
Service: |
| 【Download】【Collect】 |
《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com
京公网安备11011302000819号