计算流体力学在膜技术及膜生物反应器研究中的应用 |
作者:于艳 樊耀波? 徐国良 王琦 杨文静 |
单位: 中国科学院生态环境研究中心 水污染控制室,北京 100085 |
关键词: 计算流体力学(CFD);膜;膜生物反应器(MBR) |
DOI号: |
分类号: TQ028.8 X703 |
出版年,卷(期):页码: 2011,31(1):105-112 |
摘要: |
介绍了计算流体力学(CFD)的基本原理、内容和特点,综述了CFD在膜技术领域中的研究和发展,特别讨论了其在膜生物反应器(MBR)技术中的研究和应用,并对其应用前景进行了展望。 |
In this paper, the art computational fluid dynamics (CFD) are introduced. We review the state of the CFD methods applied to membranes processes, especially for MBR process, and give an expectation of it. |
基金项目: |
国家高级技术研究发展计划(863)项目(2006AA06Z333) |
作者简介: |
于艳(1984-),女,黑龙江省哈尔滨市人,硕士,主要从事MBR工艺优化及流体力学模拟研究,邮箱:yuyan_@126.com. |
参考文献: |
[1] 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004. [2] Meng F, Chae S, Drews A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material[J]. Water Research. 2009, 43(6): 1489-1512. [3] Belfort G, Davis R H, Zydney A L. The behavior of suspensions and macromolecular solutions in crossflow microfiltration[J]. Journal of Membrane Science. 1994, 96(1-2): 1-58. [4] Ghidossi R, Veyret D, Moulin P. Computational fluid dynamics applied to membranes: State of the art and opportunities[J]. Chemical Engineering and Processing. 2006, 45(6): 437-454. [5] Ng A N L, Kim A S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters[J]. Desalination. 2007, 212(1-3): 261-281. [6] Liu S X, Peng M, Vane L. CFD modeling of pervaporative mass transfer in the boundary layer[J]. Chemical Engineering Science. 2004, 59(24): 5853-5857. [7] 谷芳, 刘春江, 余黎明, et al等. 气-液两相降膜流动及传质过程的CFD研究[J]. 高校化学工程学报. 2005, 19(4): 438-444. [8] 何娟娟,黄卫星,肖泽仪,等. 计算流体力学在膜分离技术中的应用[J]. 化工装备技术. 2006, 27(2): 14-16. [9] 员文权,杨庆峰. 计算流体力学在反渗透膜分离中的应用[J]. 化工进展. 2008, 27(9): 1357-1363. [10] 刘百仓, 马军, 张立秋, et al等. 计算流体动力学在膜技术中的应用[J]. 中国农村水利水电. 2008(1): 40-44. [11] Darcovich K, Dal-Cin M M, Ballre S, et al. CFD-assisted thin channel membrane characterization module design[J]. Journal of Membrane Science. 1997, 124(2): 181-193. [12] Brans G, van der Sman R G M, Schro C G P H, et al. Optimization of the membrane and pore design for micro-machined membranes[J]. Journal of Membrane Science. 2006, 278(1-2): 239-250. [13] Richardson C J, Nassehi V. Finite element modelling of concentration profiles in flow domains with curved porous boundaries[J]. Chemical Engineering Science. 2003, 58(12): 2491-2503. [14] Bellhouse B J, Costigan G, Abhinava K, et al. The performance of helical screw-thread inserts in tubular membranes[J]. Separation and Purification Technology. 2001, 22-23: 89-113. [15] Bubolz M, Wille M, Langer G, et al. The use of dean vortices for crossflow microfiltration: basic principles and further investigation[J]. Separation and Purification Technology. 2002, 26(1): 81-89. [16] Ahmad A L, Lau K K. Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel[J]. Journal of Membrane Science. 2006, 286(1-2): 77-92. [17] Dendukuri D, Karode S K, Kumar A. Flow visualization through spacer filled channels by computational fluid dynamics-II: improved feed spacer designs[J]. Journal of Membrane Science. 2005, 249(1-2): 41-49. [18] Li F, Meindersma W, de Haan A B, et al. Novel spacers for mass transfer enhancement in membrane separations[J]. Journal of Membrane Science. 2005, 253(1-2): 1-12. [19] Cao Z, Wiley D E, Fane A G. CFD simulations of net-type turbulence promoters in a narrow channel[J]. Journal of Membrane Science. 2001, 185(2): 157-176. [20] Ratkovich N, Chan C C V, Berube P R, et al. Experimental study and CFD modelling of a two-phase slug flow for an airlift tubular membrane[J]. Chemical Engineering Science. 2009, 64(16): 3576-3584. [21] Ratkovich N, Chan C C V, Berube P R, et al. Experimental study and CFD modelling of a two-phase slug flow for an airlift tubular membrane[J]. Chemical Engineering Science. 2009, 64(16): 3576-3584. [22] Abdel-Jawad M M, Gopalakrishnan S, Duke M C, et al. Flowfields on feed and permeate sides of tubular molecular sieving silica (MSS) membranes[J]. Journal of Membrane Science. 2007, 299(1-2): 229-235. [23] Taha T, Cheong W L, Field R W, et al. Gas-sparged ultrafiltration using horizontal and inclined tubular membranes--A CFD study[J]. Journal of Membrane Science. 2006, 279(1-2): 487-494. [24] Smith S, Taha T, Cui Z. Enhancing hollow fibre ultrafiltration using slug-flow -- a hydrodynamic study[J]. Desalination. 2002, 146(1-3): 69-74. [25] Marcos B, Moresoli C, Skorepova J, et al. CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration[J]. Journal of Membrane Science. 2009, 337(1-2): 136-144. [26] Guglielmi G, Chiarani D, Judd S J, et al. Flux criticality and sustainability in a hollow fibre submerged membrane bioreactor for municipal wastewater treatment[J]. Journal of Membrane Science. 2007, 289(1-2): 241-248. [27] Lee Y, Clark M M. Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions[J]. Journal of Membrane Science. 1998, 149(2): 181-202. [28] Wiley D E, Fletcher D F. Techniques for computational fluid dynamics modelling of flow in membrane channels[J]. Journal of Membrane Science. 2003, 211(1): 127-137. [29] Kotzev T. Numerical study of the fluid dynamics and mass transfer of an ultrafiltration performance in a tube membrane module[J]. International Journal of Engineering Science. 1994, 32(2): 359-368. [30] Yeh H M, Cheng T W. Analysis of the slip effect on the permeate flux in membrane ultrafiltration[J]. Journal of Membrane Science. 1999, 154(1): 41-51. [31] De S, Bhattacharjee S, Sharma A, et al. Generalized integral and similarity solutions of the concentration profiles for osmotic pressure controlled ultrafiltration[J]. Journal of Membrane Science. 1997, 130(1-2): 99-121. [32] Pellerin E, Michelitsch E, Darcovich K, et al. Turbulent transport in membrane modules by CFD simulation in two dimensions[J]. Journal of Membrane Science. 1995, 100(2): 139-153. [33] Ahmad A L, Lau K K, Bakar M Z A, et al. Integrated CFD simulation of concentration polarization in narrow membrane channel[J]. Computers & Chemical Engineering. 2005, 29(10): 2087-2095. [34] Bacchin P, Espinasse B, Bessiere Y, et al. Numerical simulation of colloidal dispersion filtration: description of critical flux and comparison with experimental results[J]. Desalination International Congress on Membranes and Membrane Processes. 2006, 192(1-3): 74-81. [35] 樊耀波, 王菊思. 水与废水处理中的膜生物反应器技术[J]. 环境科学. 1995, 16(5): 79-81. [36] Li X, Wang X. Modelling of membrane fouling in a submerged membrane bioreactor[J]. Journal of Membrane Science. 2006, 278(1-2): 151-161. [37] Lu S G, Imai T, Ukita M, et al. A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products[J]. Water Research. 2001, 35(8): 2038-2048. [38] Brannock M W D, de Wever H, Wang Y, et al. Computational fluid dynamics simulations of MBRs: Inside submerged versus outside submerged membranes[J]. Desalination International Membrane Science and Technology Conference 2007, International Membrane Science and Technology Conference 2007. 2009, 236(1-3): 244-251. [39] Burrows L J, Stokes A J, West J R, et al. Evaluation of different analytical methods for tracer studies in aeration lanes of activated sludge plants[J]. Water Research. 1999, 33(2): 367-374. [40] M W D Brannock H W Y W, Leslie G. Evaluation of membrane bioreactor performance via computational fluid dynamics modelling: effect of membrane configuration and mixing[Z]. UK: 2007. [41] J Saalbach M H. CFD analysis of MBR-UNITS, recommendations for system design and operation[Z]. Berlin: 2009221-229. [42] Prieske H, Drews A, Kraume M. Prediction of the circulation velocity in a membrane bioreactor[J]. Desalination Selected Papers Presented at the 4th International IWA Conference on Membranes for Water and Wastewater Treatment, 15-17 May 2007, Harrogate, UK. Guest Edited by Simon Judd; and Papers Presented at the International Workshop on Membranes and Solid-Liquid Separation Processes, 11 July 2007, INSA, Toulouse, France. Guest edited by Saravanamuthu Vigneswaran and Jaya Kandasamy. 2008, 231(1-3): 219-226. [43] Nagaoka* T R L A. Evaluation of influence of bubble size by CFD on shear stress working on flat-sheet membrane surface in MBRs[Z]. [44] Nicolas Rios I N M W. modelling hydrodynamics in MBR systems using computational fluid dynamics[Z]. 2008. [45] S Jankhah P B C C. How fouling in submerged hollow fiber membranes is related to surface shear forces [Z]. Ghent: 200826-37. [46] 韩杰, 朱彤, 黄永刚, et al. 浸没板式膜生物反应器中流体运动的数值模拟[J]. 化学与生物工程. 2008, 25(11): 44-47. [47] Ghosh R, Cui Z F. Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes[J]. Journal of Membrane Science. 1999, 162(1-2): 91-102. [48] Taha T, Cui Z F. CFD modelling of gas-sparged ultrafiltration in tubular membranes[J]. Journal of Membrane Science. 2002, 210(1): 13-27. [49] Ndinisa N V, Wiley D E, Fletcher D F. Computational Fluid Dynamics Simulations of Taylor Bubbles in Tubular Membranes: Model Validation and Application to Laminar Flow Systems[J]. Chemical Engineering Research and Design. 2005, 83(1): 40-49. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号