双层刮膜法中聚砜膜结构的控制和性能研究 |
作者:王周为1, 季瑜1, 隋波2,李雪梅1,张云燕1, 殷勇1, 何涛1 |
单位: 1材料化学工程国家重点实验室,南京工业大学化学与化工学院,南京210009, 2烟台万化氯碱公司,烟台,264002 |
关键词: 聚砜;双层刮膜法;微孔膜 |
DOI号: |
分类号: TQ050.4+25; TQ028.8 |
出版年,卷(期):页码: 2011,31(2):39-45 |
摘要: |
同时刮膜法是一种利用涂层与支撑层分离来制备高表面开孔率微孔膜的方法.本文采用同时刮膜法制备PSf微孔膜,考察了底层制膜液中聚砜的浓度、添加剂PVPK-90含量、凝胶浴温度以及PEI涂层厚度等参数对膜结构和性能的影响.结果表明,PSf溶液中聚合物浓度增大使溶液的粘度明显增大,同时膜表面凹洞数目减少,孔径减小,且水通量减少. 添加剂PVP提高了孔与孔间的连通性,PSf膜的纯水通量随着PVP含量的增加而增大.提高凝胶浴温度,对膜孔隙率影响较小,但平均孔径和水通量增大.PEI层的厚度影响相分离前锋到达PEI与PSf溶液界面的时间, PEI层越厚,PSf膜表面结构就越疏松,膜孔径和水通量越大,但孔隙率反而下降.上述结果对双层刮膜法制备孔径可控高通量的微孔膜具有重要意义. |
The polymer concentration, PVPK-90 concentration, coagulant temperature and coating thickness were investigated for preparation of polysulfone microfiltration membranes via co-casting. Results indicated that increase of PSf concentration can effectively prevent the formation of concave structure in PSf surface with decrease in water permeability, pore size and porosity. Increasing PVP concentration significantly decreased the surface porosity. At higher coagulant temperature and with a thicker PEI coating, PSf membranes showed higher permeability and larger pore size. Theses results open up a new way in tailor making high flux MF membranes with a wide range of pore size. |
基金项目: |
国家重大基础研究973项目(No.2009CB623402), 材料化学工程国家重点实验室基金(No.38901120), 自然科学基金(No.20976083) |
作者简介: |
王周为:男,安徽舒城人,1983年5月生,汉族,2001年-2005年淮南师范学院,2007年9月至今,,就读于南京工业大学化学与化工学院硕士 |
参考文献: |
[1] Gan Q. Beer clarification by cross-flow microfiltration effect of surface hydrodynamics and reversed membrane morphology[J]. Chem Eng Processing, 2001,40:413-419. [2]Gan Q, Howell J A. Field R W etal. Synergetic cleaning procedure for a ceramic membrane fouled by beer micro-fltration[J]. J Membr Sci,1999,155:277-289. [3] Gan Q, Howell J A. Field R W etal. Beer clarification by microfiltration-product quality control and fractionation of particles and macromolecules[J].J Membr Sci, 2001,194: 185-196. [4] Baker R W. Membrane Technology and Application[B]. JohnWiley & Sons, 2004. [5] Lloyd D R, Kinzer K E, Tseng H S. Microporous membrane fo- rmation via thermally-induced phase separation.(I) Solid-liquid phase separation[J]. J Membr Sci, 1990, 52: 239-26. [6] Zeman L, Fraser T. Formation of air-casting cellulose acetate membrane. Part I. Study of macrovoid formation[J]. J Membr Sci, 1993, 84: 93-106. [7] Zeman L, Fraser T. Formation of air-casting cellulose acetate membrane. Part. Kinetics of demixing and macrovoid gro- wth[J]. J Membr Sci, 1994, 87: 267-279. [8] Strathmann H, Koch K. The formation mechanism of phase inversion membranes[J]. Desalination 1977, 21:241-249. [9] Kesting R E. Phase inversion membranes[J].John Wiley, 1985, 269:131-152. [10] Mulder M. 膜技术基本原理[B]. 第二版. 北京:清华大学出版社, 1999. [11] Wang D L, Li K, Teo W K.Relationship between mass ratio of nonsolvent-additive to solvent in membrane casting solution and its coagulation value[J]. J Membr Sci, 1995, 98: 233-240. [12] Li X M, Ji Y, He T. A Sacrificial-layer Approach to Prepare Microfiltration Membranes[J]. J Membr Sci, 2008, 320: 1-7. [13] 何涛,李雪梅,李战胜.一种多孔分离膜的制备方法[P].中国, CN 101091880A,2007年12月26日. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号