纳滤膜孔结构、荷电性质、分离机理及动电性质研究进展
作者:王晓琳,涂丛慧,方彦彦,肖燕,周波
单位: 清华大学膜材料与工程北京市重点实验室
关键词: 纳滤膜;非平衡热力学;筛分效应;荷电效应;动电性质
DOI号:
分类号:
出版年,卷(期):页码: 2011,31(3):127-0134

摘要:
纳滤膜拥有介于反渗透膜和超滤膜之间的截留分子量,同时对无机盐的截留率随着盐的种类和浓度而改变,广泛应用于各种水净化处理和产品精制分离过程。本文从纳滤膜孔结构和荷电性质、纳滤膜分离机理及其模型、纳滤膜动电性质等三个方面对纳滤膜分离技术20多年来的基础及应用研究进展进行回顾和总结,简要分析了今后纳滤膜分离技术的发展方向及趋势。
As a promising separation technology, nanofiltration (NF) plays a more and more important role in various water purification and treatment as well as product separation processes. NF membranes have two typical features that is, sieving effect and electrostatic effect, and are called dense reserve osimosis membranes and ultrafiltration membranes. This paper summarized the progresses on the researches on the evaluation of pore structure and electrical property, the separation mechanism and modeling, as well as the electrokinetic phenomena of the NF membranes over the past two decades. Lastly brief words are mentioned the direction or tendency of the research and development on NF technology in future.

基金项目:
国家973计划(2009CB623404)、北京市自然科学重点基金(2100001)

作者简介:
王晓林,男,教授

参考文献:
[1] Bowen, W.R., A.W. Mohammad, and N. Hilal, Characterisation of nanofiltration membranes for predictive purposes - Use of salts, uncharged solutes and atomic force microscopy[J]. Journal Of Membrane Science, 1997, 126(1):91-105.
[2] Nakao, S., Determination of pore-size and pore-size distribution 39:filtration membranes[J]. Journal of Membrane Science, 1994, 96(1-2):131-165.
[3] Spiegler, K.S. and O. Kedem, Thermodynamics of hyperfiltration (reverse-osmosis) - criteria for efficient membranes[J]. Desalination, 1966, 1(4):311-326.
[4] Nakao, S. and S. Kirnura, Models of membrane transport phenomena and their appplications for ultrafiltration data[J]. Journal of Chemical Engineering of Japan, 1982, 15:200-205.
[5] Wang, X.L., T. Tsuru, S. Nakao, et al., The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes[J]. Journal Of Membrane Science, 1997, 135(1):19-32.
[6] Wang, X.L., T. Tsuru, M. Togoh, et al., Evaluation of pore structure and electrical-properties of nanofiltration membranes [J]. Journal Of Chemical Engineering Of Japan, 1995, 28(2):186-192.
[7] Hijnen, H.J.M., J. Vandaalen, and J.A.M. Smit, The application of the space-charge model to the permeability properties of charged microporous membranes[J]. Journal Of Colloid And Interface Science, 1985, 107(2):525-539.
[8] Bowen, W.R. and J.S. Welfoot, Modelling the performance of membrane nanofiltration - critical assessment and model development[J]. Chemical Engineering Science, 2002, 57(7):1121-1137.
[9] Bandini, S. and D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization[J]. Chemical Engineering Science, 2003, 58(15):3303-3326.
[10] Szymczyk, A. and P. Fievet, Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model[J]. Journal of Membrane Science, 2005, 252(1-2):77-88.
[11] Bowen, W.R., T.A. Doneva, and J.A.G. Stoton, The use of atomic force microscopy to quantify membrane surface electrical properties[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2002, 201(1-3):73-83.
[12] Hanai, T. and D.A. Haydon, An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solution[J]. Proceedings of the Royal Society of London Series A, 1964, 281:337-391.
[13] Kiyohara, K.J., K.S. Zhao, K.Z. Asaka, et al., Determination of capacitances and conductances of the consituent phases from dielectric observations on terlamellar composite systems[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1990, 29(9):1751-1756.
[14] Asaka, K., Dielectric-properties of cellulose-acetate reverse-osmosis membranes in aqueous salt-solutions[J]. Journal of Membrane Science, 1990, 50(1):71-84.
[15] Li, Y.H. and K.S. Zhao, Dielectric model of concentration polarization-numerical simulation for the composite membrane and solution system[J]. Acta Chimica Sinica, 2007, 65:2124-2132.
[16] Li, Y.H. and K.S. Zhao, Dielectric analysis of nanofiltration membrane in electrolyte solutions: influences of electrolyte concentration and species on membrane permeation[J]. Journal of Colloid and Interface Science, 2004, 276(1):68-76.
[17] Zhao, K.S. and Y.H. Li, Dielectric characterization of a nanofiltration membrane in electrolyte solutions: Its double-layer structure and ion permeation[J]. Journal Of Physical Chemistry B, 2006, 110(6):2755-2763.
[18] Hunter, R.J., Zeta Potential in Colloid Science, Principles and Applications[B]. 1981, Academic Press: San Diego.
[19] Shang, W.J., H.L. Wang, C.H. Tu, et al., Membrane Potential of Charged Porous Membranes in Single 1-1 Electrolyte Solutions[J]. Acta Chimica Sinica, 2009, 67(9):969-973.
[20] Szymczyk, A., N. Fatin-Rouge, and P. Fievet, Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes[J]. Journal of Colloid and Interface Science, 2007, 309(2):245-252.
[21] Fievet, P., M. Mullet, J.C. Reggiani, et al., Influence of surface charge on adsorption of a hydrophobic peptide onto a carbon surface by capacitance measurement's[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1998, 144(1-3):35-42.
[22] Fievet, P., A. Szymczyk, B. Aoubiza, et al., Evaluation of three methods for the characterisation of the membrane-solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores[J]. Journal of Membrane Science, 2000, 168(1-2):87-100.
[23] Sbai, M., P. Fievet, A. Szymczyk, et al., Streaming potential, electroviscous effect, pore conductivity and membrane potential for the determination of the surface potential of a ceramic ultrafiltration membrane[J]. Journal of Membrane Science, 2003, 215(1-2):1-9.
[24] Szymczyk, A., P. Fievet, and B. Aoubiza, Electrolyte conductivity in charged capillaries[J]. Desalination, 2003, 151(2):177-184.
[25] Szymczyk, A., P. Fievet, and A. Foissy, Electrokinetic characterization of porous plugs from streaming potential coupled with electrical resistance measurements[J]. Journal of Colloid and Interface Science, 2002, 255(2):323-331.
[26] Szymczyk, A., P. Fievet, M. Mullet, et al., Comparison of two electrokinetic methods - electroosmosis and streaming potential - to determine the zeta-potential of plane ceramic membranes[J]. Journal of Membrane Science, 1998, 143(1-2):189-195.
[27] Szymczyk, A., P. Fievet, M. Mullet, et al., Study of electrokinetic properties of plate ceramic membranes by electroosmosis and streaming potential[J]. Desalination, 1998, 119(1-3):309-313.
[28] Ariza, M.J. and J. Benavente, Streaming potential along the surface of polysulfone membranes: a comparative study between two different experimental systems and determination of electrokinetic and adsorption parameters[J]. Journal of Membrane Science, 2001, 190(1):119-132.
[29] Benavente, J., A. Hernandez, and G. Jonsson, Proper and adsorbed charges on the surfaces of the polysulfonic support of a compostie membrane from electrokinetic phenomena[J]. Journal of Membrane Science, 1993, 80(1-3):285-296.
[30] Childress, A.E. and M. Elimelech, Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 1996, 119(2):253-268.
[31] Peeters, J.M.M., M.H.V. Mulder, and H. Strathmann, Streaming potential measurements as a characterization method for nanofiltration membranes[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1999, 150(1-3):247-259.
[32] Tay, J.H., J.L. Liu, and D.D.L. Sun, Effect of solution physico-chemistry on the charge property of nanofiltration membranes[J]. Water Research, 2002, 36(3):585-598.
[33] Takagi, R. and M. Nakagaki, The oretical-study of the effect of ion adsorption on membrane-potential and its application to collodion membranes[J]. Journal Of Membrane Science, 1990, 53(1-2):19-35.
[34] Takagi, R. and M. Nakagaki, Membrane-potential of separation membranes a affected by ion adsorption[J]. Journal of Membrane Science, 1992, 71(3):189-200.
[35] Afonso, M.D., G. Hagmeyer, and R. Gimbel, Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions[J]. Separation and Purification Technology, 2001, 22-3(1-3):529-541.
[36] Ernst, M., A. Bismarck, J. Springer, et al., Zeta-potential and rejection rates of a polyethersulfone nanofiltration membrane in single salt solutions[J]. Journal of Membrane Science, 2000, 165(2):251-259.
[37] Hagmeyer, G. and R. Gimbel, Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values[J]. Desalination, 1998, 117(1-3):247-256.
[38] Bowen, W.R. and H. Mukhtar, Characterisation and prediction of separation performance of nanofiltration membranes[J]. Journal of Membrane Science, 1996, 112(2):263-274.
[39] Bandini, S., Modelling the mechanism of charge formation in NF membranes: Theory and application[J]. Journal Of Membrane Science, 2005, 264(1-2):75-86.
[40] Bandini, S., J. Drei, and D. Vezzani, The role of pH and concentration on the ion rejection in polyamide nanofiltration membranes[J]. Journal Of Membrane Science, 2005, 264(1-2):65-74.
[41] Schaep, J. and C. Vandecasteele, Evaluating the charge of nanofiltration membranes[J]. Journal of Membrane Science, 2001, 188(1):129-136.
[42] Mazzoni, C. and S. Bandini, On nanofiltration Desal-5 DK performances with calcium chloride-water solutions[J]. Separation and Purification Technology, 2006, 52(2):232-240.
[43] Mazzoni, C., L. Bruni, and S. Bandini, Nanofiltration: Role of the electrolyte and pH on desal DK performances[J]. Industrial & Engineering Chemistry Research, 2007, 46(8):2254-2262.
[44] Mullet, M., P. Fievet, J.C. Reggiani, et al., Surface electrochemical properties of mixed oxide ceramic membranes: Zeta-potential and surface charge density[J]. Journal of Membrane Science, 1997, 123(2):255-265.
[45] Mullet, M., P. Fievet, A. Szymczyk, et al., A simple and accurate determination of the point of zero charge of ceramic membranes[J]. Desalination, 1999, 121(1):41-48.
[46] Szymczyk, A., P. Fievet, J.C. Reggiani, et al., Characterisation of surface properties of ceramic membranes by streaming and membrane potentials[J]. Journal of Membrane Science, 1998, 146(2):277-284.
[47] Darwish, N.A., N. Hilal, H. Al-Zoubi, et al., Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes[J]. Chemical Engineering Research & Design, 2007, 85(A4):417-430.
[48] Yangali-Quintanilla, V., A. Verliefde, T.U. Kim, et al., Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes[J]. Journal of Membrane Science, 2009:251-62.
[49] Renkin, E.M., Filtration, diffusion, and molecular sieving through porous cellulose membranes[J]. Journal of General Physiology, 1954, 38(2):225-243.
[50] Pappenheimer, J.R., Passage of molecules through capillary walls[J]. Physiological Reviews, 1953, 33(3):387-423.
[51] Pappenheimer, J.R., E.M. Renkin, and L.M. Borrero, Filtration, diffusion and molecular sieving through peripheral capillary membranes a contribution of the pore theory of capillary permeability[J]. American Journal of Physiology, 1951, 167(1):13-46.
[52] Fair, J.C. and J.F. Osterle, Reverse electrodialysis in charged capillary membaranes[J]. Journal of Chemical Physics, 1971, 54(8):3307-&.
[53] Gross, R.J. and J.F. Osterle, Membrane transport characteristic of ultrafine capillaries[J]. Journal of Chemical Physics, 1968, 49(1):228-&.
[54] Morrison, F.A. and J.F. Osterle, Electrokinetic energy conversion in ultrafine capillaries[J]. Journal of Chemical Physics, 1965, 43(6):2111-&.
[55] Teorell, T., Studies on the "diffusion effect" upon ionic distribution I. Some theoretical considerations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1935, 21:152-161.
[56] Meyer, K.H. and J.F. Sievers, La perméabilité des membranes. I. Théorie de la perméabilité ionique[J]. Helv. Chim. Acta., 1936, 19(1):649-664.
[57] Teorell, T., Studies on the diffusion effect upon ionic distribution II. Experiments on ionic accumulation[J]. Journal of General Physiology, 1937, 21(1):107-122.
[58] Wang, X.L., T. Tsuru, M. Togoh, et al., Transport of organic electrolytes with electrostatic and steric-hindrance effects through nanofiltration membranes[J]. Journal of Chemical Engineering of Japan, 1995, 28(4):372-380.
[59] Deon, S., P. Dutournie, L. Limousy, et al., Transport of salt mixtures through nanofiltration membranes: Numerical identification of electric and dielectric contributions[J]. Separation And Purification Technology, 2009, 69(3):225-233.
[60] Lanteri, Y., A. Szymczyk, and P. Fievet, Influence of steric, electric, and dielectric effects on membrane potential[J]. Langmuir, 2008, 24(15):7955-7962.
[61] Szymczyk, A. and P. Fievet, Ion transport through nanofiltration membranes: the steric, electric and dielectric exclusion model[J]. Desalination, 2006, 200(1-3):122-124.
[62] Vezzani, D. and S. Bandini, Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes[J]. Desalination, 2002, 149(1-3):477-483.
[63] Yaroshchuk, A.E., Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion[J]. Separation and Purification Technology, 2001, 22-3(1-3):143-158.
[64] Labbez, C., P. Fievet, F. Thomas, et al., Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability[J]. Journal of Colloid and Interface Science, 2003, 262(1):200-211.
[65] Wang, X.L., T. Tsuru, S. Nakao, et al., Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model[J]. Journal Of Membrane Science, 1995, 103(1-2):117-133.
[66] Shang, W.J., C.H. Tu, and X.L. Wang, Theoretical calculation of reflection coefficients of single salt solutions through charged porous membranes[J]. Desalination, 2009, 236(1-3):306-315.
[67] Shang, W.J., X.L. Wang, and Y.X. Yu, Theoretical calculation on the membrane potential of charged porous membranes in 1-1, 1-2, 2-1 and 2-2 electrolyte solutions[J]. Journal of Membrane Science, 2006, 285(1-2):362-375.
[68] Jacazio, G., Probstei.Rf, A.A. Sonin, et al., Electrokinetic salt rejection in hyperfiltration through porous materials- theory and experiment[J]. Journal of Physical Chemistry, 1972, 76(26):4015-4023.
[69] Sasidhar, V. and E. Ruckenstein, Electrolyte osmosi through capillaries[J]. Journal of Colloid and Interface Science, 1981, 82(2):439-457.
[70] Smit, J.A.M., Reverse-osmosis in charged membranes-analytical predictions from the space-charge model[J]. Journal of Colloid and Interface Science, 1989, 132(2):413-424.
[71] Sasidhar, V. and E. Ruckenstein, Anomalous effects during electrolyte osmosis across charged porous membranes[J]. Journal of Colloid and Interface Science, 1982, 85(2):332-362.
[72] Shukla, A. and A. Kumar, Modeling of separation of aqueous solutions of FeCl3 and AlCl3 by zeolite-clay composite membranes using a space-charge model[J]. Journal of Colloid and Interface Science, 2004, 274(1):204-215.
[73] Oldham, I.B., J.F. Osterle, and F.J. Young, Streaming potential in small capillaries[J]. Journal of Colloid Science, 1963, 18(4):328-&.
[74] Christoforou, C.C., G.B. Westermannclark, and J.L. Anderson, The streaming potential and inadequacies of the helmhltz-equation[J]. Journal Of Colloid And Interface Science, 1985, 106(1):1-11.
[75] Diez, L.M., F.M. Villa, A.H. Gimenez, et al., Streaming potential of some polycarbonate microporous membranes when bathed by LiCl, NaCl, MgCl2 and CaCl2 aqueous-solutions[J]. Journal of Colloid and Interface Science, 1989, 132(1):27-33.
[76] Fievet, P., B. Aoubiza, A. Szymczyk, et al., Membrane potential in charged porous membranes[J]. Journal of Membrane Science, 1999, 160(2):267-275.
[77] Fievet, P. and A. Szymczyk, Characterisation of electrical properties of membrane pore walls[J]. Comptes Rendus Chimie, 2002, 5(6-7):493-505.
[78] Labbez, C., P. Fievet, A. Szymczyk, et al., Theoretical study of the electrokinetic and electrochemical behaviors of two-layer composite membranes[J]. Journal of Membrane Science, 2001, 184(1):79-95.
[79] Szymczyk, A., B. Aoubiza, P. Fievet, et al., Electrokinetic phenomena in homogeneous cylindrical pores[J]. Journal of Colloid and Interface Science, 1999, 216(2):285-296.
[80] Szymczyk, A., P. Fievet, B. Aoubiza, et al., An application of the space charge model to the electrolyte conductivity inside a charged microporous membrane[J]. Journal of Membrane Science, 1999, 161(1-2):275-285.
[81] Szymczyk, A., C. Labbez, P. Fievet, et al., Streaming potential through multilayer membranes[J]. Aiche Journal, 2001, 47(10):2349-2358.
[82] Szymczyk, A., Y. Lanteri, and P. Fievet, Modelling the transport of asymmetric electrolytes through nanofiltration membranes[J]. Desalination, 2009, 245(1-3):396-407.
[83] Born, M., Volumen and hydratationswärme der ionen[J]. Z. Physik. Chem., 1920, 1:45-48.
[84] Yaroshchuk, A.E., Dielectric exclusion of ions from membranes[J]. Advances in Colloid and Interface Science, 2000, 85(2-3):193-230.
[85] Bowen, W.R. and J.S. Welfoot, Modelling of membrane nanofiltration - pore size distribution effects[J]. Chemical Engineering Science, 2002, 57(8):1393-1407.
[86] Bowen, W.R. and H.N.S. Yousef, Effect of salts on water viscosity in narrow membrane pores[J]. Journal of Colloid and Interface Science, 2003, 264(2):452-457.
[87] Schirg, P. and F. Widmer, Characterization of nanofiltration membranes for the separation of aqueous dye-salt solutions[J]. Desalination, 1992, 89(1):89-107.
[88] Perry, M. and C. Linder, Intermediate reverse-osmosis ultrafiltration (RO UF) membranes for concentration and desalting of low-molecular weight organic solutes[J]. Desalination, 1989, 71(3):233-245.
[89] Koyuncu, I., Influence of dyes, salts and auxiliary chemicals on the nanofiltration of reactive dye baths: experimental observations and model verification[J]. Desalination, 2003, 154(1):79-88.
[90] Kedem, O. and A. Katchalsky, Permeability of composite membranes. 1. Electric current, volume flow of solute through membranes[J]. Transactions of the Faraday Society, 1963, 59(488):1918-&.
[91] Garcia-Aleman, J. and J.M. Dickson, Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions[J]. Journal of Membrane Science, 2004, 235(1-2):1-13.
[92] Garcia-Aleman, J. and J.M. Dickson, Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membranes: membrane charge inversion phenomena[J]. Journal of Membrane Science, 2004, 239(2):163-172.
[93] Garcia-Aleman, J., J. Dickson, and A. Mika, Experimental analysis, modeling, and theoretical design of McMaster pore-filled nanofiltration membranes[J]. Journal of Membrane Science, 2004, 240(1-2):237-255.
[94] Bowen, W.R., J.S. Welfoot, and P.M. Williams, Linearized transport model for nanofiltration: Development and assessment[J]. Aiche Journal, 2002, 48(4):760-773.
[95] Ahmad, A.L., M.F. Chong, and S. Bhatia, Mathematical modeling and simulation of the multiple solutes system for nanofiltration process[J]. Journal of Membrane Science, 2005, 253(1-2):103-115.
[96] Tu, C.H., L. Wu, D.X. Wang, et al., Prediction of separation performance of NF membranes for mixed electrolytes solution[J]. Desalination, 2010, 260(1-3):218-224.
[97] Wu, L., L. Song, X.L. Wang, et al., Experimental study on separation performance of nanofiltration membranes for bicarbonate salts solution[J]. Desalination, 2009, 236(1-3):299-305.
[98] Wang, D.X., L. Wu, Z.D. Liao, et al., Modeling the separation performance of nanofiltration membranes for the mixed salts solution with Mg2+ and Ca2+[J]. Journal of Membrane Science, 2006, 284(1-2):384-392.
[99] Wang, D.X., X.L. Wang, Y. Tomi, et al., Modeling the separation performance of nanofiltration membranes for the mixed salts solution[J]. Journal of Membrane Science, 2006, 280(1-2):734-743.
[100] Hijnen, H.J.M. and J.A.M. Smit, An analysis of partially film-controlled membrane potentials of weak cation exchange membranes using the space-charge model[J]. Journal of Membrane Science, 2000, 168(1-2):259-274.
[101] Martinez, L., M.A. Gigosos, A. Hernandez, et al., Study of some electrokinetic phenomena in charged microcapillary porous membranes[J]. Journal of Membrane Science, 1987, 35(1):1-20.
[102] Schmid, G., Electrochemistry of capillary systems with narrow pores. I. Overview[J]. Journal of Membrane Science, 1998, 150(2):151-157.
[103] Lefebvre, X., J. Palmeri, and P. David, Nanofiltration theory: An analytic approach for single salts[J]. Journal Of Physical Chemistry B, 2004, 108(43):16811-16824.
[104] Xu, T.W., Y.Q. Fu, and X.L. Wang, Membrane potential model for an asymmetrical nanofiltration membrane - consideration of noncontinuous concentration at the interface[J]. Desalination, 2005, 171(2):155-165.
[105] Escoda, A., Y. Lanteri, P. Fievet, et al., Determining the Dielectric Constant inside Pores of Nanofiltration Membranes from Membrane Potential Measurements[J]. Langmuir, 2010, 26(18):14628-14635.
[106] Lettmann, C., D. Mockel, and E. Staude, Permeation and tangential flow streaming potential measurements for electrokinetic characterization of track-etched microfiltration membranes[J]. Journal of Membrane Science, 1999, 159(1-2):243-251.
[107] Sbai, M., A. Szymczyk, P. Fievet, et al., Influence of the membrane pore conductance on tangential streaming potential[J]. Langmuir, 2003, 19(21):8867-8871.
[108] Yaroshchuk, A. and V. Ribitsch, Role of channel wall conductance in the determination of zeta-potential from electrokinetic measurements[J]. Langmuir, 2002, 18(6):2036-2038.
[109] Fievet, P., M. Sbai, A. Szymczyk, et al., A new tangential streaming potential setup for the electrokinetic characterization of tubular membranes[J]. Separation Science and Technology, 2004, 39(13):2931-2949.
[110] Labbez, C., R. Fievet, A. Szymczyk, et al., A comparison of membrane charge of a low nanofiltration ceramic membrane determined from ionic retention and tangential streaming potential measurements[J]. Desalination, 2002, 147(1-3):223-229.
[111] Al-Amoudi, A., P. Williams, S. Mandale, et al., Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability[J]. Separation and Purification Technology, 2007, 54(2):234-240.
[112] Tang, C.Y.Y., Y.N. Kwon, and J.O. Leckie, Characterization of humic acid fouled reverse osmosis and nanofiltration membranes by transmission electron microscopy and streaming potential measurements[J]. Environmental Science & Technology, 2007, 41(3):942-949.
[113] Fievet, P., M. Sbai, and A. Szymczyk, Analysis of the pressure-induced potential arising across selective multilayer membranes[J]. Journal of Membrane Science, 2005, 264(1-2):1-12.
[114] Szymczyk, A., M. Sbai, and P. Fievet, Analysis of the pressure-induced potential arising through composite membranes with selective surface layers[J]. Langmuir, 2005, 21(5):1818-1826.
[115] Benavente, J. and G. Jonsson, A comparison between streaming potential and membrane potential measured across single charged and bipolar membranes[J]. Separation and Purification Technology, 2001, 22-3(1-3):637-642.
[116] Benavente, J. and G. Jonsson, Influence of the external conditions on salt retention and pressure-induced electrical potential measured across a composite membrane[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects, 1999, 159(2-3):431-437.
[117] Yaroshchuk, A.E., Y.P. Boiko, and A.L. Makovetskiy, Filtration potential across membranes containing selective layers[J]. Langmuir, 2002, 18(13):5154-5162.
[118] Lefebvre, X. and J. Palmeri, Nanofiltration theory: Good co-ion exclusion approximation for single salts[J]. Journal Of Physical Chemistry B, 2005, 109(12):5525-5540.
[119] Fang, Y.Y., C.H. Tu, and X.L. Wang, Application of the Electrostatic and Steric-hindrance Model to Analysis of Transmembrane Potential Across Nanofiltration Membranes[J]. Chemical Journal of Chinese Universities-Chinese, 2010, 31(4):782-789.
[120] Tu, C.-H., H.-L. Wang, and X.-L. Wang, Study on transmembrane electrical potential of nanofiltration membranes in KCl and MgCl2 solutions[J]. Langmuir, 2010, 26(22):17656-64.
[121] Benavente, J. and G. Jonsson, Electrokinetic characterization of composite membranes: estimation of different electrical contributions in pressure induced potential measured across reverse osmosis membranes[J]. Journal Of Membrane Science, 2000, 172(1-2):189-197.
 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号