新型反渗透膜的研究进展 |
作者:陈欢林1,瞿新营1,张林1,高从堦2 |
单位: 1. 浙江大学化学工程与生物工程学系,2. 膜与水处理技术教育部工程研究中心 杭州,310027 |
关键词: 反渗透膜;无机膜;杂化膜;新型有机膜 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2011,31(3):101-109 |
摘要: |
反渗透膜的发展推动了水处理技术的进步,自从聚酰胺膜诞生,反渗透膜的发展处于瓶颈阶段,而寻求新型膜材料的研究也在进行中。本文从无机膜、杂化膜及新型有机膜三个方向叙述了近年来反渗透膜的研究状况,归纳了各种类型反渗透膜的分离性能,应用前景及存在问题,为反渗透膜的发展提供了参考依据。 |
The development of water treatment technology was propelled by the advancement of reverse osmosis membrane, and the bottleneck period of reverse osmosis membrane was started since the polyamide membrane was used. The advancement of reverse osmosis membrane on inorganic membrane, hybrid membrane and novel organic membrane was presented in this paper. The separation performance, the application status and problem was also summarized, and the guide for the development of reverse osmosis membrane was provided. |
基金项目: |
国家自然科学基金资助项目 (No.21076176);“973”计划项目 (2009CB623402);国家水专项(2009ZX07424-001) |
作者简介: |
陈欢林,男,教授 |
参考文献: |
[1]汤蓓蓓, 徐铜文, 武培怡. 界面聚合法制备复合膜[J]. 化学进展,2007, 19 (9): 1428-1434. [2] 吴礼光, 周勇, 张林, 陈欢林, 高从揩. 反渗透复合膜功能材料研究进展[J].化学进展, 2008, 20 (7/8):1216-1222. [3] 邬迪华, 朱碧文, 俞三传, 反渗透复合膜的表面特性及表面改性[J]. 水处理技术, 2009, 35 (5): 11-20. [4] Kang G, Liu M, Lin B, Cao Y, Yuan Q. A novel method of surface modi?cation on thin-?lm composite reverse osmosis membrane by grafting poly(ethylene glycol)[J]. Polymer, 2007, 48: 1165-1172. [5] Wavhal D S, Fisher E R. Membrane surface modi?cation by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling[J]. Langmuir, 2003, 19: 79-85. [6] Nowon K, Dong Ho Shin, Lee Y T. Effect of silane coupling agents on the performance of RO membranes[J]. J Membr Sci, 2007, 300: 224–231. [7] Qiu S, Wu L G, Zhang L, Chen H L. Congjie Gao. Preparation of Reverse Osmosis Composite Membrane with High Flux by Interfacial Polymerization of MPD and TMC[J]. J Appl Polym Sci, 2009, 112: 2066–2072. [8] Lin J, Murad S. A computer simulation study of the separation of aqueous solutions using thin zeolite membranes[J]. Molecular Physics, 2001, 99: 1175-1182. [9] Murad S, Powles J G. A computer simulation of the classic experiment on osmosis and osmotic pressure[J. J Chem Phys,1993, 99: 7271–7272. [10] Flanigen E M, Bennett J M, Grose R W. Silicalite, a new hydrophobic crystalline silica molecular sieve[J]. Nature, 1978, 271(9): 512–516. [11] Murad S, Molecular dynamics simulations of osmosis and reverse osmosis in solutions[J]. Adsorption, 1996, 2: 95–101. [12] Kumakiri I, Yamaguchi T, Nakao S, Application of a zeolite A membrane to reverse osmosis process[J]. J Chem Eng Jpn, 2000, 33: 333–336. [13] Lin J, Murad S. A computer simulation study of the separation of aqueous solutions using thin zeolite membranes[J]. Mol Phys, 2001, 99: 1175–1181. [14] Malekpour A, Millani M R, Kheirkhah M. Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions[J]. Desalination, 2008, 225: 199–208. [15] Li L X, Liu N, McPherson B, Lee R.. Influence of counter ions on the reverse osmosis through MFI zeolite membranes: implications for produced water desalination[J]. Desalination, 2008, 228: 217–225. [16] Li L X, Dong J H, Nenoff T M, Lee R. Desalination by reverse osmosis using MFI zeolite membranes[J]. J Membr Sci, 2004, 243: 401–404. [17] Kazemimoghadam M, Mohammadi T. Synthesis of MFI zeolite membranes for water desalination[J]. Desalination, 2007, 206: 547–553. [18] Li L X, Dong J H, Nenoff T M. Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis[J]. Sep Purif Technol, 2007, 53: 42–48. [19] Duke M C, Brien-Abraham J O, Milne N, Zhu B, Lin J Y S. Seawater desalination performance of MFI type membranes made by secondary growth[J]. Sep Purif Technol, 2009, 68: 343–350. [20] Li L X, Liu N, McPherson B, Lee R. Enhanced Water Permeation of Reverse Osmosis through MFI-Type Zeolite Membranes with High Aluminum Contents[J]. Ind Eng Chem Res, 2007, 46: 1584-1589. [21] Liu N, Li L X, McPherson B, Lee R. Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes[J]. J Membr Sci, 2008, 325: 357–361. [22] Qu X Y, Dong H, Zhou Z J, Zhang L, Chen H L. Pervaporation Separation of Xylene Isomers by Hybrid Membranes of PAAS Filled with Silane-Modified Zeolite[J]. Ind Eng Chem Res, 2010, 49: 7504–7514. [23] Jeong B H, Hoek E M V, Yan Y S, Subramani A, Huang X F, Hurwitz G, Ghosh A K. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes[J]. J Membr Sci, 2007, 294: 1-7. [24] Mary L L, Asim K G, Anna J, Huang X F, William H, Yang Y, Hoek E M V. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes[J]. Langmuir, 2009, 25(17): 10139-10145. [25] Lind M L, Jeong B H, Subramani A, Huang X, Hoek E M V. Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes[J]. J Mater Res, 2009, 24: 1624–1631. [26] Mar Y L, Daniel E S, Nguyen T V, Hoek E M V. Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RO Membrane Performance[J]. Environ Sci Technol, 2010, 44: 8230–8235. [27] Kong C L, Shintani T, Toshinori T. ‘‘Pre-seeding’’-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification[J.] New J Chem, 2010, 34: 2101–2104. [28] Park K T, Kim S G, Chun B H, Bang J, Kim S H. Sulfonated poly(arylene ether sulfone) thin-film composite reverse osmosis membrane containing SiO2 nanoparticles[J]. Desalination and water treatment, 2010, 15: 69-75. [29]Singh P S, Aswal V K J. Characterization of physical structure of silica nanoparticles encapsulated in polymeric structure of polyamide ?lms[J]. J Colloid Interface Sci, 2008, 326(1): 176–185. [30] Ghanshyam L J, Singh P S. Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties[J]. J Membr Sci, 2009, 328: 257–267. [31] Ghanshyam L J, Vinod K A, Singh P S. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles[J]. J Colloid Interface Sci, 2010, 351: 304–314. [32] Choi O, Deng K K, Kim N J, Ross L, Surampalli R Y, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth[J]. Water Res, 2008, 42: 3066–3074. [33] Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton R I. Silver nanoparticle-decorated porous ceramic composite for water treatment[J]. J Membr Sci, 2009, 331: 50–56. [34] Lee S Y, Kim H J, Patel R, Im S J, Kim J H, Min B R P. Silver nanoparticles immobilized on thin ?lm composite polyamide membrane: characterization, nano?ltration, antifouling properties[J]. Adv Technol, 2007, 18(7): 562–568. [35] Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton R I. Silver nanoparticle-decorated porous ceramic composite for water treatment[J]. J Membr Sci, 2009, 331: 50–56. [36] Kim S H, Kwak S Y, Sohn B H, Park T H. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem[J]. J Membr Sci, 2003, 211: 157–165. [37] Kwak S Y, Kim S H, Kim S S. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal antifouling. 1. Preparation and characterization of TiO2 nanoparticle self assembled aromatic polyamide thin-film-composite (TFC) membrane[J]. Environ Sci Technol, 2001, 35: 2388–2394. [38] Lee H S, Kim S J, Kim J H, Min J P, Ryul B. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles[J]. Desalination, 2008, 219: 48–56. [39] Madaoni S S,Ghaemi N. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation[J]. J Membr Sci, 2007, 303: 221–233. [40] Li N N. Separation science and technology in the 21st century— from an industrial perspective of energy, sustainability and globalization. 2009 AIChE Annual Meeting, Nashville, TN, 2009, Nov. 8-13. [41] Jin W Q, Toutianoush A, Tieke B. Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes[J]. Langmuir, 2003, 19: 2550–2553. [42] Tieke B, Ackern F, Krasemann L, Toutianoush A. Ultrathin self-assembled polyelectrolyte multilayer membranes[J]. Eur Phys J E, 2001, 5: 29–39. [43] Zhou M, Nemade P R, Lu X, Zeng X, Hatakeyama E S, Richard D N, Gin D L. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly[J]. J Am Chem Soc, 2007, 129: 9574–9575. [44] Park H B, Freeman B D, Zhang Z B, Sankir M, McGrath J E. Highly chlorine-tolerant polymers for desalination[J]. Angew Chem Int Ed, 2008, 120: 6108–6113. [45] Li X F, Fustin C A, Vankelecom I F J. Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties[J]. J Mater Chem, 2010, 20: 4333–4339. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号