燃料电池全氟磺酸质子交换膜研究进展
作者:张永明1, 唐军柯2,袁望章2
单位: 1.山东东岳高分子材料有限公司 淄博 256401; 2.上海交通大学,化学化工学院 上海 200240
关键词: 全氟磺酸质子交换膜;质子交换膜燃料电池;直接甲醇燃料电池
DOI号:
分类号: O484
出版年,卷(期):页码: 2011,31(3):76-85

摘要:
全氟磺酸质子交换膜作为质子交换膜燃料电池和直接甲醇燃料电池的关键部件得到广泛关注。本文介绍了国内外全氟磺酸质子交换膜的发展历程和现状,讨论了商业化全氟磺酸膜存在的高温质子传导率低和燃料渗透率高等问题。最后结合我们的研究工作综述了解决这些问题的方法和研究进展。
It is concerned that Perfluorosulfonic acid (PFSA) membranes are the most critical components of proton-exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC). In this article, the current status and development progress of PFSA membranes are briefly described. Some critical  problems for  commercial PFSA membranes, such as low proton conductivity at high temperatures and high osmosis of fuel, are discussed. Finally, combining our own researches, the development of methods for improving the PFSA membranes performances is reviewed.

基金项目:

作者简介:
张永明(1960-),男,博士,教授,从事含氟功能材料研究.

参考文献:
[1]. http://americanhistory.si.edu/fuelcells/pem/pemmain.htm[OL]
[2] Houblod H G. Nano structure of Nafion: a SAXS study[J]. J Electrochimica Acta,2001,46:l559-1563.
[3] Zawodzinski T A Jr.Derouin C,Radziski S. et al.Water uptake by and transport through Nafion® 117 membranes[J]. J Electrochem Soc,l993,140:l041-1047.
[4] Djilali N. Lu D M. Influence of heat transfer on gas and water transport in fuel cells[J]. Intern J Thermal Sci,2002,4l: 1 29-40.
[5] Rajalakshmi N.Sridhar P.Dhathathreyan K S.Identification and characterization of parameters for external humidification used in polymer electrolyte membrane fuel cells[J]. J Power Source,2002,l09:2 452-457.
[6] Yang T H. Yoon Y G. Kim C S.et a1.A novel preparation method for a self-humidifying polymer electrolyte membrane[J].  J Power Sources,2002,106:1 328-332.
[7] Heitner W C. Recent advances in perfluorinated ionomer membranes: structure, properties and applications[J]. J Membr Sci,1996,120:1 1-33.
[8] Mauritz K A. Moore R B. State of understanding of Nafion[J]. Chem Rev,2004,104:10 4535-4585.
[9] 陈延禧. 聚合物电解质燃料电池的研究进展[J]. 电源技术,1996,20:1 21-27.
[10] 张永明. 全氟离子交换膜的研究和应用[J]. 膜科学与技术,2008,28:3 1-4.
[11] Curtin D E. Lousenberg R D. Henry T J. et al. Advanced materials for improved PEMFC performance and life[J]. J Power Sources,2004,131:1 41–48
[12] http://www2.dupont.com/FuelCells/en_US/assets/downloads/dfc201.pdf[OL]
[13] Choudhury B. Material Challenges in Proton Exchange Membrane Fuel Cells[R]. International Symposium on Material Issues in a Hydrogen Economy,Richmond,VA USA November 12 - 15, 2007.
[14] Merlo L. Ghielmi A. Cirillo L. et al. Membrane electrode assemblies based on HYFLON ion for an evolving fuel cell technology-separation science and technology[J]. Separat Sci Tecnol,2007,42:2891–2908.
[15]http://www.solvaysites.com/sites/solvayplastics/EN/specialty_polymers/Melt_Processable_Fluoropolymers/Pages/Aquivion_PFSA.aspx[OL]
[16] Merlo L. Ghielmi A. Cirillo L. et al. Resistance to peroxide degradation of Hyflon® Ion membranes[J]. J Power Sources,2007,171:1 140–147
[17] Danilczuk M. Perkowski A. J. Schlick S. Ranking the stability of perfluorinated membranes used in fuel cells to attack by hydroxyl radicals and the effect of Ce(III): a competitive kinetics approach based on spin trapping ESR[J]. Macromolecules,2010,43:7 3352-3358.
[18] Luan Y. H. Zhang Y. M. Li L. et al. Perfluorosulfonic ionomer solution in
N,N-dimethylformamide [J]. J Appl Polym Sci,2008,107:2892–2898.
[19] Luan Y. H. Zhang Y. M. Zhang H. et al. J Annealing effect of perfluorosulfonated ionomer membranes on proton conductivity and methanol permeability[J]. J Appl Polym Sci,2008,107:396–402.
[20] Luan Y. H. Zhang H. Zhang Y. M. et al. Study on structural evolution of perfluorosulfonic ionomer from concentrated DMF-based solution to membranes[J].
 J Membr Sci,2008,319:1 91–101
[21] Li Q. F. He R. H. Jensen J. Q. et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operational above 100 oC[J]. Chem Mater,2003,15:4896-4915
[22] Li Q. F. He R. H. Gao J. A. et al.CO poisoning effect in polymer electrolyte membrane fuel cells, operational at temperatures up to 200 oC[J]. J Electrochem Soc,2003,150:12 A1599-A1605.
[23] Jefrey K. Bamdad B. Alex, H. et al. Ultra-thin integral composite membrane[P]. US Patent 5,547,551,1996.
[24] Cleghorn S. Kolde J. Liu W. Catalyst coated composite membranes[M]. Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley & Sons, Ltd. Ed. Vielstich W. Gasteiger H. A. Arnold Lamm.: Fuel Cell Technology and Applications. 2003,3:Ch 44 566-575.
[25] Liu W. Ruth K. Rusch G. The Membrane Durability in PEM Fuel Cells[J]. J. New Mat. Electrochem. Systems,2001,4:227-231.
[26] Tooru K. Tatsuo Y. Development of PRIMEA for DMFC[J].  FCDIC Fuel Cell Symposium Proceedings,2005,12:228-231.
[27] Hamrock S. New Membranes for PEM Fuel Cells. http://www1.eere.energy.gov/hydrogenandfuelcells//pdfs/htmwg05_hamrock.pdf[OL]. [28] Zhang J. L. Xie Z. Zhang J.J. et al. High temperature PEM fuel cells[J]. J Power Sources,2006,160:2 872–891.
[29] Bose S. Kuila T. Nguyen T. X. Kim N. H. et al. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges[J]. Prog Polym Sci,2011,36:6 813-843. 
[30] Ma C. Zhang L. Mukerjee S. D.et al. An investigation of proton conduction in select PEM’s and reaction layer interfaces-designed for elevated temperature operation[J]. J. Membr. Sci,2003,219:1 123–136.
[31] Yen C.Y. Lee C.H. Lin Y. F. et al. Sol–gel derived sulfonated-silica/Nafion_ composite membrane for direct methanol fuel cell[J]. J Power Sources,2007,173:1 36–44.
[32]Rhee C. H. Kim H. K. Chang H. et al. Nafion/sulfonated montmorillonite composite: A new concept electrolyte membrane for direct methanol fuel cells[J]. Chem Mater,2005,17:1691–1697. 
[33] Wu Z. Sun G. Jin W. et al. A model for methanol transport through Nafion-membrane in diffusion cell[J]. J Membr Sci,2008,325:1 376–382.
[34] Miyake N. Wainright J. S. Savinell R.F. Evaluation of a sol–gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol uptake and methanol permeability[J]. J Electrochem Soc 2001,148:A905–A909.
[35] Hsu W. Y. Gierke T. D. Ion transport and clustering in nafion perfluorinated membranes[J]. J Membr Sci,1983,13:3 307-326.
[36] Rieke P. C. Vanderborgh N. E. Polymer electrolyte fuel cell model[J]. J Membr Sci,1987,32:2 313-328.
[37] Ramani V. Kunz H.R. Fenton J. M. Metal dioxide supported heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation[J]. J Membr Sci,2006,279:1 506-512.
[38]http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/technical_targets_membr_auto.pdf[OL]
[39] Adjemian K.T. Lee S.J. Srinivasan S. J. et al. Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140°C[J]. J. Electrochem.Soc. 2002,149:A256–A261.
[40] Savinell R. Yeager E. Tryk D. et al. A polymer electrolyte for operation at temperatures up to 200°C[J]. J. Electrochem. Soc,1994,141:L46-L48.
[41] Shao Z.G. Xu H. Li M. et al. Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell[J]. Solid State Ionics,2006,177:7 779–785.
[42] Yang C. Srinivasan S. Bocarsly A.B. et al. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes[J]. J. Membr Sci,2004,237:1 145–161.
[43] Kwak S.H. Yang T.H. Kim C.S. et al. Polymer composite membrane incorporated with a hygroscopic material for high-temperature PEMFC[J].  Electrochim Acta,2004,50:2 653–657.
[44] Kwak S.H. Yang T.H. Kim C.S. et al. Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell[J].  Solid State Ionics,2003,160:3 309–315.
[45] Lin J. C. Jnuz H. R. Fenton J. M. In Handbook of Fuel Cells; Vielstich, W., Lamm A. Gasteiger H. A. Eds. John Wiley & Sons Ltd.: New York 2003,3:457.
[46] Si Y. Kunz H.R. Fenton J.M. Nafion-Teflon-Zr(HPO4)2 composite membranes for high-temperature PEMFCs[J]. J Electrochem Soc,2004,151:A623–A631
[47] Zhai Y. F. Zhang H. M. Hu J. W. et al. Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity[J]. J Membr Sci,2006,280:1 148–155
[48] Park Y. I. Kim J.D. Nagai M. Increase of proton conductivity in amorphous phosphate-Nafion membranes[J]. J Mater Sci Lett,2000,19:18 1621-1623.
[49] Dimitrova P. Friedrich K. A. Stimming U. et al. Modified Nafion®-based membranes for use in direct methanol fuel cells[J]. Solid State Ionics,2002,150: 115-122.
[50] Noto V. D. Piga M. Lavina S. et al. Structure, properties and proton conductivity of Nafion/[(TiO2) (WO3)0.148]ψTiO2 nanocomposite membranes[J]. Electrochim Acta,2010,55:4 1431–1444.
[51] Tian J. Gao P. Zhang Z. et al. Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs[J]. Int J hydrogen energ,2008,33:20 5686–5690
[52]Lin Y. F. Yen C. Y. Hung C.H. et al. A novel composite membranes based on sulfonated montmorillonite modified Nafion® for DMFCs[J]. J Power Sources,2007,168:1 162–166.
[53] Chen L. C. Yu T. L. Lin H. L. et al. Nafion/PTFE and zirconium phosphate modified Nafion/PTFE composite membranes for direct methanol fuel cells[J]. J Membr Sci,2008,307:1 10–20.
[54] Wang H. Holmberg B.A. Huang L. et al. Nafion-bifunctional silica composite proton conductive membranes[J]. J. Mater. Chem,2002,12:4 834–837.
[55] Tazi B. Savadogo O. Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene[J]. Electrochim Acta,2000,45:25 4329-4339
[56] Mioc U. Davidovic M. Tjapkin N. et al. Equilibrium of the protonic species in hydrates of some heteropolyacids at elevated temperatures[J]. Solid State Ion,1991,46:1 103-109.
[57] Shang F. J. Li L. Zhang Y. M. PWA/silica/PFSA composite membrane for direct methanol fuel cells[J]. J Mater Sci,2009,44:4383–4388
[58] Su L.J. Pei S. P. Li L. et al. Preparation of polysiloxane/perfluorosulfonic acid nanocomposite membranes in supercritical carbon dioxide system for direct methanol fuel cell[J].  Int J hydrogen energ,2009,34:16 6892 – 6901
[59] Su L.J. Li L. Li H. et al. Preparation of polysiloxane modified perfluorosulfonic acid composite membranes assisted by supercritical carbon dioxide for direct methanol fuel cell[J]. J Power Sources,2009,194:1 220–225.
[60] 吴千舜. 诸柏仁. 燃料电池质子交换膜的最新发展[J]. Chemistry,2004,62: 1 123-138.
[61] Su L.J. Li L. Li H. et al. Perfluorosulfonic acid membranes treated by supercritical carbon dioxide method for direct methanol fuel cell application[J]. J Membr Sci,2009,335:1 118–125.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号