聚氧化乙烯气体分离膜的发展 |
作者:曹义鸣 赵红永 康国栋 丁晓莉 袁权 |
单位: 中国科学院大连化学物理研究所 |
关键词: 聚氧化乙烯;醚氧基团;溶解选择性;二氧化碳 |
DOI号: |
分类号: TQ028.2 |
出版年,卷(期):页码: 2011,31(3):18-22 |
摘要: |
聚氧化乙烯 [poly(ethylene oxide), PEO] 类膜材料含有大量与CO2有很强相互作用的醚氧基团,使得它具有很高的CO2/light gases(例如:H2、N2、CH4)溶解选择性,因此带来很高的CO2/light gases选择性。介绍了具有高溶解选择性CO2气体分离膜材料的筛选,重点叙述了PEO类膜材料的发展以及目前主要的PEO类膜材料的气体分离性能。当PEO含量达到足够高时,PEO类膜材料的CO2/light gases选择性大小基本相同,而它们的CO2透气性随着膜材料链段结构的不同而有大不同。 |
Membrane materials of poly(ethylene oxide) (PEO) containing numbers of ether oxygen groups, which has favorable interaction with CO2, has high solubility selectivity of CO2/light gases resulting in high selectivity of CO2/light gases. The screenings of membrane materials with high solubility selectivity for separating CO2 was introduced. The development and gas separation properties of main PEO membrane materials were described emphatically. When the content of PEO reaches high enough, the PEO membrane materials have the almost closer solubility selectivity of CO2/light gases and different CO2 permeability because of the different chain structures of these membrane materials. |
基金项目: |
国家“973”计划项目(2009CB623405);国家自然科学基金资助项目(20836006) |
作者简介: |
曹义鸣 (1962- ),男,浙江台州人,研究员,博士生导师,主要从事膜材料研究与开发、聚合物膜成膜过程及新型分离膜、膜分离过程中传质机理、膜分离应用及集成技术等方向的研究. * 通讯联系人 |
参考文献: |
[1] 袁权. 能源化学进展[M]. 北京: 化学工业出版社, 2005. [2] Z.H. Duan, H.L. Xiao, Z.B. Dong, et al. Estimate of total CO2 output from desertified sandy land in China. [J]. Atmospheric Environment, 2001, 35: 5915-5921 [3] Jose´ D. Figuero, Timothy Fout, Sean Plasynski, et al. Advances in CO2 capture technology-The U.S. Department of Energy’s Carbon Sequestration Program: Review. [J]. International Journal of Green House Gas Control, 2008, 2: 9-20 [4] 费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离——分离技术面临的挑战和机遇. [J].化工进展, 2005, 24: 1-4 [5] 时钧, 袁权, 高从堦. 膜技术手册[M]. 北京: 化学工业出版社, 2001. [6] 王学松. 现代膜技术及其应用指南[M]. 北京: 化学工业出版社, 2005 [7] Colin A. Scholes, Sandra E. Kentish, Geoff W. Stevens. Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications. [J]. Recent Patents on Chemical Engineering, 2008, 1: 52-66. [8] Richard W. Baker, Kaaeid Lokhandwala. Natural Gas Processing with Membranes: An Overview. [J]. Industrial Engineering Chemistry Research, 2008, 47: 2109-2121. [9] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. [J]. Journal of Membrane Science, 1991, 62: 165-185. [10] L.M. Robeson, W.F. Burgoyne, M. Langsam, A.C. Savoca, C.F. Tien, High performance polymers for membrane separation.[J]. Polymer, 1994, 35: 4970-4978. [11] L.M. Robeson, C.D. Smith, M. Langsam, A group contribution approach to predict permeability and permselectivity of aromatic polymers. [J]. Journal of Membrane Science, 132: 33-54. [12] Lloyd M. Robeson The upper bound revisited. [J]. Journal of Membrane Science,2008, 320: 390-400. [13] B.D. Freeman, I. Pinnau. Separation of gases using solubility-selective polymers.[J]. Trends Polymer Science, 1997, 5: 167-173. [14] B.D. Freeman. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. [J]. Macromolecules, 1999, 32: 375-380. [15] H. Lin, E.V. Wager, B.D. Freeman, et al. Plasticization-enhanced hydrogen purification using polymeric membranes, Science, 2006, 311: 639-642. [16] H. Lin, B.D. Freeman. Gas and vapor solubility in cross-linked poly(ethylene glycol diacrylate). [J]. Macromolecules, 2005, 38: 8394-8407. [17] H. Lin, T. Kai, B.D. Freeman, S. Kalakkunnath, et al. The effect of crosslinking on gas permeability in crosslinked poly(ethylene glycol diacrylate). [J]. Macromolecules, 2005, 38: 8381-8393. [18] H. Lin , E.V. Wagner, J.S. Swinnea, et al. Transport and structural characteristics of crosslinked poly(ethylene oxide) rubbers. [J]. Journal of Membrane Science, 2006, 276: 145-161. [19] H. Lin, B.D. Freeman, S. Kalakkunnath, et al. Effect of copolymer composition, temperature, and carbon dioxide fugacity on pure- and mixed-gas permeability in poly(ethylene glycol)-based materials: Free volume interpretation. [J]. Journal of Membrane Science, 2007, 291: 131-139. [20] C. Ribeiro, B.D. Freeman. Sorption, dilation, and partial molar volumes of carbon dioxide and ethane in crosslinked poly(ethylene oxide). [J]. Macromolecules, 2008, 41: 9458-9468. [21] V.A.Kusuma, S. Matteucci, B.D. Freeman, et al. Influence of phenoxy-terminated short chain pendant groups on gas transport properties of crosslinked poly(ethylene oxide) copolymers. [J]. Journal of Membrane Science, 2009, 341: 84-95. [22] C. Ribeiro, B.D. Freeman. Solubility and partial molar volume of carbon dioxide and ethane in crosslinked poly(ethylene oxide) copolymer. [J]. Journal of Membrane Science, 2010, 48: 456-468. [23] H. Lin, B.D. Freeman. Materials selection guidelines for membranes that remove CO2 from gas mixtures. [J]. Journal of Molecular Structure, 2005, 739: 57-74. [24] A. Gennaro, A. A. Isse, E. Vianello. Solubility and Electrochemical Determination of CO2 in Some Dipolar Aprotic Solvents. [J]. Journal of Electroanalytical Chemistry, 1990, 289: 203-15. [25] F. Gibanel, M. C. Lopez, F. M. Royo, et al. Solubility of Nonpolar Gases in Tetrahydrofuran at 0 to 30 ℃ and 101.33 kPa Partial Pressure of Gas. [J]. Journal of Solution Chemistry, 1993, 22: 211-217. [26] F. W. Giacobbe. Thermodynamic Solubility Behavior of Carbon Dioxide in Acetone. [J]. Fluid Phase Equilibria, 1992, 72: 277-297. [27] N. Bruckl, J. Kim. Gibbs Free Energies of Solute Solvent Interactions for He, Ne, Ar, Kr, Xe, H2, O2, N2, CH4, SF6, C2H4, CO2 and C2H2 in Various Solvents: Comparison of Theoretical Prediction with Experiment. [J]. Zeitschriftfur Physikalische Cehmie Neue Folge, Bd., 1981, 126: 133-150. [28] J. H. Dymond. The Solubility of a Series of Gases in Cyclohexane and Dimethylsulfoxide. [J]. Journal of Physical and Chemical Reference Data, 1967, 71: 1829-1831. [29] V. I. Bondar, B. D. Freeman, I. Pinnau. Gas Sorption and Characterization of Poly(ether-b-amide) Segmented Block Copolymers. [J]. Journal of Polymer Science, Part B: Polymer Physics., 1999, 37: 2463-75. [30] N. Cao, M. Pegoraro, F. Bianchi, et al. Gas Transport Properties of Polycarbonate-Polyurethane Membranes. [J]. Journal of Applied Polymer Science, 1993, 48: 1831-42. [31] 严瑞瑄. 水溶性高分子[M]. 化学工业出版社, 北京. 2001. [32] M. Kawakami, Y. Yamashita, M. Yamasaki, et al. Effects of Dissovled Inorganic Salts on Gas Permeabilities of Immobilized Liquid Polyethylene Glycol Membranes.[J]. Journal of Polymer Science Part B: Polymer Letters. Ed., 1982, 20: 251-257. [33] M. Kawakami, H. Iwanaga, Y. Yamashita, et al. Enhancement of Carbon Dioxide Permselectivity of Immobilized Liquid Polyethylene Glycol Membrane by Addition of Metal Salts. [J]. The Chemical Society of Japan, 1983, 6: 847-53. [34] T. Nakagawa, T. Saito, S. Asakawa, et al. Polyacetylene Derivatives as Membranes for Gas Separation. [J]. Gas Separation and Purification, 1988, 2: 3-8. [35] J. Li, K. Nagai, T. Nakagawa, S. Wang. Preparation of Polyethyleneglycol (PEG) and Cellulose Acetate (CA) Blend Membranes and Their Gas Permeabilities. [J]. Journal of Applied Polymer Science, 1995, 58: 1455-63. [36] M. Kawakami, H. Iwanaga, Y. Hara, et al. Gas Permeabilities of Cellulose Nitrate/Poly(ethylene glycol) Blend Membranes. [J]. Journal of Applied Polymer Science, 1982, 27: 2387-2393. [37] L. Liu, A. Chakma, X. Feng. A novel method of preparing ultrathin poly(ether block amide) membranes. [J]. Journal of Membrane Science, 2004, 235: 43-52. [38] K. Okamoto, M. Fujii, S. Okamyo, et al. Gas permeation properties of poly(ether imide) segmented copolymers. [J]. Macromolecules, 1995,28: 6950-6956 [39] M. Yoshino, K. Ito, H. Kita, et al. Effects of hard-segment polymers on CO2/N2 gas- separation properties of poly(ethylene oxide)-segmented copolymers. [J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38: 1707-1715. [40] H. Suzuki, K. Tanaka, H. Kita, et al. Preparation of Composite Hollow Fiber Membranes of Poly(ethylene oxide)-Containing Polyimide and Their CO2/N2 Separation Properties. [J]. Journal of Membrane Science, 1998, 146: 31-37. [41] Y. Hiarayama, S. Kazama, E. Fujisawa, et al. Novel membranes for carbon dioxide separation. [J]. Energy Conversion. Management, 1995, 36: 435-438 [42] Y. Hirayama, Y. Kase, N. Tanihara, et al. Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films. [J]. Journal of Membrane Science, 1999, 160: 87-99. [43] Membrane technology research, http://www.mtrinc.com/co2_removal_from_syngas.html. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号