计算流体力学在纳滤膜分离技术研究中应用 |
作者:侯立安 尹洪波 |
单位: 第二炮兵工程设计研究院 |
关键词: 计算流体力学;纳滤;模拟 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2011,31(3):5-10 |
摘要: |
介绍了计算流体力学(CFD)在膜分离过程模拟中的基本原理,探讨了CFD在膜隔网优化设计、纳滤膜污染机理研究、纳滤膜对无机离子截留等领域中的应用,并对CFD在纳滤膜分离技术研究中的应用前景进行了展望。 |
The basic principles of computational fluid dynamics (CFD) in membrane separation process were introduced, and the application of CFD in spacer optimized design, mechanism of nanofiltration membrane pollution, inorganic ions intercepted by nanofiltration membrane, etc, were discussed . An expectation of application of CFD in nanofiltration process was given. |
基金项目: |
作者简介: |
侯立安(1957-),男,江苏丰县人,博士,中国工程院院士,从事环境工程研究 |
参考文献: |
[1] 王晓琳,丁宁编著,反渗透和纳滤技术及其应用[M],化学工业出版社,2005 [2] J. C. Fair, J. C. Osterle. Reverse electro-dialysis in charged capillary membranes[J]. Journal of Chemical Physics, 1971,54(8):3307-3312. [3] X.L. Wang, D.X. Wang, Y. Tomi. Transport of organic electrolytes with electrostatic and steric-hindrance effects through nanofiltration membrane[J]. Journal of Chemical Engineering of Japan, 1995,28(4):372-380. [4] X.L. Wang T. Tsuru, S.I. Nakao, S. Kimura. Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model. Journal of Membrane Science[J], 1997, 103(1):117-133. [5] C.Y. Wang, Exact solutions of the steady-state Navier–Stokes equations[J], Annu.Rev. Fluid. Mech. 1991,23:159–177. [6] B.S. Narang, Exact solution for entrance region flow between parallel plates[J], Int. J. Heat Fluid Fl. 1983,4 :177–181. [7] 王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004. [8] G.A. Fimbres-Weihs, D.E. Wiley, Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules[J], Chem. Eng. Process. 2010, doi:10.1016/j.cep.2010.01.007. [9] G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of two-dimensional multilayer spacer designs for minimum drag and maximum mass transfer[J], J.Membr. Sci. 2008, 325:809–822. [10] N.R. Rosaguti, D.F. Fletcher, B.S. Haynes, Laminar flow and heat transfer in a periodic serpentine channel[J], Chem. Eng. Technol. 2005, 28:353–361. [11] K. Darcovich, M.M. Dal-Cin, B. Gros, Membrane mass transport modeling with the periodic boundary condition[J], Comput. Chem. Eng. 2009, 33:213–224. [12] G.A. Fimbres-Weihs, D.E. Wiley, D.F. Fletcher, Unsteady flows with mass transfer in narrow zigzag spacer-filled channels: a numerical study[J], Ind. Eng. Chem. Res. 2006, 45:6594–6603. [13] G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of mass transfer in three dimensional spacer-filled narrow channels with steady flow[J], J. Membr. Sci. 2007, 306:228–243. [14] Y.-L. Li, K.-L. Tung, CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions[J], Desalination. 2008, 233: 351–358. [15] G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of mass transfer in threedimensional spacer-filled narrow channels with steady flow[J], J. Membr. Sci. 2007, 306:228–243. [16] V.V. Ranade, A. Kumar, Fluid dynamics of spacer filled rectangular and curvilinear channels[J], J. Membr. Sci. 2006, 271:1–15. [17] C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, A numerical and experimental study of mass transfer in spacer-filled channels: effects of spacer geometrical characteristics and Schmidt number[J], J. Membr. Sci. 2009, 326:234–251. [18] F. Li, W. Meindersma, A.B. De Haan, T. Reith, Optimization of commercial net spacers in spiral wound membranes modules[J], J. Membr. Sci. 2002, 208:289–302. [19] S.Wardeh, H.P.Morvan, CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination[J], Chemical Engineering Research and Design. 2008, 86:1107-1116 [20] A.L. Ahmad, K.K. Lau, M.Z. Abu Bakar, Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel[J], J. Membr. Sci. 2005, 262:138-152. [21] Ahmad A L,Lau K K.Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel[J].Journal of Membrane Science,2006,286:77-92. [22] C. Picioreanu, M.C.M. Van Loosdrecht, J.J. Heijnen, A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms[J], Biotechnology and Bioengineering. 2000, 68 (4):355–369. [23] C. Picioreanu, M.C.M. Van Loosdrecht, J.J. Heijnen, Two-dimensional model of biofilm detachment caused by internal stress from liquid flow[J], Biotechnology and Bioengineering. 2001, 72 (2):205–218. [24] H.J. Eberl, C. Picioreanu, J.J. Heijnen, M.C.M. van Loosdrecht, A threedimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms[J], Chemical Engineering Science. 2000, 55 (24):6209–6222. [25] G.E. Kapellos, T.S. Alexiou, A.C. Payatakes, Hierarchical simulator of biofilm growth and dynamics in granular porous materials[J], Advances in Water Resources. 2007, 30:1648–1667. [26] D.A. Graf von der Schulenburg, T.R.R. Pintelon, C. Picioreanu, M.C.M. Van Loosdrecht, M.L. Johns, Three-dimensional simulations of biofilm growth in porous media[J], AIChE Journal. 2009, 55 (2):494–504. [27] C. Picioreanu, M.C.M. van Loosdrecht, T.P. Curtis, K. Scott, Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance, Bioelectrochemistry (2009), doi:10.1016/j.bioelechem.2009.04.009. [28] C. Picioreanu, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, Three-dimensional numerical modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices[J], Journal of Membrane Science. 2009, 345:340–354. [29] J.S. Vrouwenlder, C. Picioreanu, J.C. Kruithof, M.C.M. wan Loosdrecht, Biofouling in spiral wound membrane systems: Three-dimension CFD model based evaluation of experiment data[J], Journal of Membrane Science. 2010, 346:71-85. [30] M. Rahimi, S.S. Madaeni, M. Abolhasani, Ammar Abdulaziz Alsairafi, CFD and experimental studies of fouling of a microfiltration membrane[J], Chemical Engineering and Processing. 2009, 48:1405-1413. [31] A.L. Ahmad, K.K. Lau, M.Z. Abu Bakar, S.R.Abd. Shukor, Integrated CFD simulation of concentration polarization in narrow membrane channel[J], Comput. Chem. Eng. 2005, 29:2087–2095. [32] P. Bacchin, B. Espinasse, Y. Bessiere, D.F. Fletcher, P. Aimar, Numerical simulation of colloidal dispersion filtration: description of critical flux and comparison with experimental results[J], Desalination. 2006, 192:74–81 [33] 侯立安,纳滤工艺净化核生化沾染生活用水的研究[D],北京:防化研究院,2006. [34] 王洁,孙珮石,方富林登,纳滤膜处理含金属离子酸性废液[J],膜科学与技术,2010,30(3):35-38. [35] 侯立安, 左莉, 刘晓敏. 纳滤膜对模拟放射性核素的截留机理研究[J]. 2006中国科协年会(分3)论文集. 2006: 584-589 [36] R. Krishna, J.A. Wesselingh, The Maxwell–Stefan approach to mass transfer[J], Chem. Eng. Sci. 1997, 52:861–911. [37] W.M. Aguilella, J. Garrido, S. Mafé, J. Pellicer, A finite-difference method for numerical solution of the steady-state Nernst–Planck equations with non-zero convection and electric current density[J], J. Membr. Sci. 1986, 28:139–149. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号