卷式反渗透膜的气液两相流清洗特性 |
作者:郭竹洁?,王枢,孟涛,王娇 |
单位: 西南交通大学 生命科学与工程学院,成都 610031 |
关键词: 气液两相流;膜清洗;卷式反渗透膜;截留率;通量恢复率;气体流速;气液比 |
出版年,卷(期):页码: 2011,31(6):73-77 |
摘要: |
建立新型膜清洗装置,将压缩空气和化学清洗液形成气液两相混合流体对2.5英寸卷式反渗透膜进行清洗研究。系统地探讨了气液两相流清洗过程中清洗液流量、气体流速、气液比、清洗时间对膜截留率和通量恢复率的影响。结果表明清洗液在0.12 L•min-1时,即可获得较好的膜通量恢复率。不同过滤面积的反渗透膜,清洗液的临界流量不同,超过该流量对膜通量恢复率无明显影响。膜通量恢复率随气体流速的增加而增加,聚酰胺材质反渗透膜气速上限是18 m•s-1,更高的气速将降低膜截留率。气液比在2000:1~3000:1范围内能有效提高膜通量恢复率。两相流清洗时间一般不超过15 min就能获得理想清洗效果。 |
A novel membrane cleaning apparatus was constructed and used to study the cleaning of 2.5-inch spiral RO membrane with gas-liquid two-phase flow process. The two-phase flow mixture was formed by cleaning liquid mixed with compressed air. The effect of cleaning liquid flow rate, air velocity, gas to liquid ratio and cleaning time of gas-liquid two-phase flow process on rejection rate and flux recovery ratio (FRR) of RO membrane was investigated systematically. The results showed that high FRR was achieved by relatively low cleaning liquid flow rate about 0.12L•min-1. RO membranes with different active areas had different cleaning critical flow rates. Above the critical flow rate, FRR increased slowly. FRR increased with increasing air velocity. For polyamide composite RO membrane, the upper limit of air velocity was 18 m•s-1 and higher air velocity would decrease rejection rate of membrane. FRR was effectively improved when the gas to liquid ratio was from 2000:1 to 3000:1. The two-phase flow process was validated for cleaning 2.5-inch RO membranes effectively using a short 15-minute cycle. |
郭竹洁(1986-), 女, 山西省长治市,硕士研究生, 西南交通大学生命科学与工程学院, 从事膜分离研究. * 通讯联系人〈wone_su@163.com〉 |
参考文献: |
[1] 张烽, 徐平. 反渗透、纳滤膜及其在水处理中的应用[J]. 膜科学与技术, 2003, 23(4): 241-245 [2] 陈欢林, 戴兴国, 吴礼光. 反渗透、纳滤膜技术脱除小分子有机物的研究进展[J]. 膜科学与技术, 2009, 29(3): 1-10 [3] 吴家珍, 李付林, 张兴文, 等. 反渗透膜对市政污水的深度处理回用研究[J]. 膜科学与技术, 2010, 30(2): 64-68 [4] 王广金, 陈文梅, 褚良银, 等. 内陆油气田高含盐污水处理技术综述[J]. 过滤与分离, 2003, 13(1): 41-43 [5] 屈阁, 王志, 樊智锋, 等. 混凝-砂滤-微滤-反渗透集成技术深度处理抗生素制药废水[J]. 膜科学与技术, 2008, 28(3): 72-78 [6] 肖文军, 刘仲华, 龚志华. 茶叶深加工中膜法浓缩技术研究[J]. 膜科学与技术, 2006, 26(1): 55-60 [7] 郝旺春, 杜启云, 刘恩华. 管式膜液固两相流清洗系统的研究[D] : [硕士论文]. 天津: 天津工业大学, 2009. 1-68 [8] Kim H G, Park C, Yang J, et al. Optimization of backflushing conditions for ceramic ultrafiltration membrane of disperse dye solutions[J]. Desalination, 2007, 202: 150–155 [9] 员文权, 杨庆峰. 加压溶气法清洗反渗透膜污染及相关流型研究[D]: [硕士论文]. 上海: 上海交通大学, 2009. 1-134 [10] Remize P J, Guigui C, Cabassud C. Evaluation of backwash efficiency definition of remaining fouling and characterisation of its contribution in irreversible fouling: Case of drinking water production by air-assisted ultra-filtration[J]. Journal of Membrane Science, 2010, 355: 104–111 [11] 郭伟, 晋卫, 王宾, 等. 污染聚偏氟乙烯中空纤维超滤膜的超声清洗[J]. 化工学报, 2006, 57(12): 3040-3044 [12] 张国俊, 刘忠洲. 超滤膜的超声波助清洗研究[J]. 环境科学, 2003, 24(6): 130-134 [13] 芮延年, 郭旭红, 刘文杰, 等. 超声振动强化膜分离过程机理的研究[J]. 环境污染治理技术与设备, 2002, 3(6): 43-46 [14] 张国俊, 刘忠洲. 膜过程中膜清洗技术研究进展[J]. 水处理技术, 2003, 29(4): 187-190 [15] Cui Z F, Chang S, Fane A G. The use of gas bubbling to enhance membrane processes. Journal of Membrane Science, 2003, 221: 1–35 |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号