氢键对纳滤膜截留率的影响 |
作者:张文娟 ,张宇峰,王翔 |
单位: 天津工业大学中空纤维膜材料与膜过程教育部重点实验室,天津300160 |
关键词: 纳滤,氢键,截留率,电荷密度 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2011,31(6):56-59 |
摘要: |
纳滤膜与极性分子在形成氢键的过程中伴随着电子的传递现象,导致纳滤膜表面的电荷密度降低和荷电效应的减弱,从而引起截留率发生变化。本文从氢键出发,通过测试纳滤膜表面的电荷密度,探索氢键与截留率之间的关系。结果表明:随着对硝基苯酚浓度的增大,膜表面的电荷密度逐渐降低,即形成的氢键数目增多,截留率呈现下降的趋势。 |
Hydrogen bonds may form between polar organic molecules and polyamides on the surface of the nanofiltration membrane.This course is accompanied by electronic transport phenomena. As a result, electrostatic effect and charge density on the nanofiltration membrane surface get lower.And this causes rejection rates changed. The values of surface charge density with different concentration p-nitrophenol were measured to investigate the relationship between hydrogen bond and rejection. The results show that with the increase of concentration of p-nitrophenol surface charge density of the nanofiltration membrane reduced gradually and rejection got lower. |
基金项目: |
作者简介: |
张文娟(1986~),女,山东省泰安市人,硕士研究生,主要研究方向为膜材料与膜技术.E-mail:wenjuanvivian@126.com,Tel:15822677907。*通讯作者:张宇峰(1962~),男,教授,博士生导师。E-mail:zyf9182@tjpu.edu.cn |
参考文献: |
[1] Tessier L, Bouchard P, Rahni M. Separation and purification of benzylpenicillin produced by fermentation using coupled ultrafiltration and nanofiltration technologies[J]. J Biotechnol, 2005, 116(1): 79-89. [2] Bowen W R, Cao X W. Electrokinetic effects in membrane pores and the determination of zeta-potential[J]. J Membr Sci, 1998, 140(2): 267-273. [3] Bowen W R, Mohammad A W, Hilal N. Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy[J]. J Membr Sci, 1997, 126(1): 91-105. [4] 王刚, 王翔, 张宇峰, 等. 氢键作用对纳滤过程荷电效应的影响[J]. 材料科学与工程学报, 2009, 27(4): 610-612,504. [5] Vellenga E, Tragardh G. Nano?ltration of combined salt and sugar solutions: coupling between retentions[J]. Desalination, 1998, 120 (3): 211-220. [6] Matsubara Y, Iwasaki K, Nakajima M, et al. Recovery of oligosaccharides from steamed soybean waste water in tofu processing by reverse osmosis and nano?ltration membranes[J]. Biosci Biotechnol Biochem, 1996, 60 (3): 421-428. [7] Hofman J A M, Noij T H M, Schippers J C. Removal of peptides and other organic micropollutants with membrane filtration[J]. Water Supply, 1993, 11 (3): 129-135. [8] Kiso Y, Sugiura Y, Kitao T, et al. Effects on hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes[J]. J Membr Sci, 2001, 192(1-2): 1-10. [9] Jiraratananon R, Sungpet A, Luangsowan P. Performance evaluation of nano?ltration membranes for treatment of ef?uents containing reactive dye and salt[J]. Desalination, 2000, 130(2): 177-183. [10] 陶氏膜产品与技术手册[M].陶氏化学公司,2006版 [11] 王建, 王晓琳. 聚丙烯腈超滤膜流动电位的测定[J]. 淮海工学院学报, 2002, 11(1): 38-41. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号