溴化聚苯醚渗透汽化非对称膜的制备及其乙醇/水分离性能
作者:曾小雅,纪树兰,秦振平,牛洪金,刘威
单位: 北京工业大学 环境与能源工程学院,北京 100124
关键词: 溴化聚苯醚;非对称膜;乙醇/水体系;渗透汽化
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2011,31(6):30-34

摘要:
对聚苯醚(PPO)进行了溴代反应,采用凝胶相转化法制备溴代聚苯醚(BPPO)非对称膜。通过扫描电镜(SEM)观察膜表面及断面形貌,并以低浓度乙醇/水体系为研究对象,考察了添加剂含量、BPPO浓度、料液组成及料液温度对BPPO膜渗透汽化分离性能的影响。结果表明,该非对称膜较文献报道中的PPO膜,其分离因子有了明显的提高,在60℃添加剂浓度9.9%,BPPO浓度10%,进料液乙醇浓度5%时,膜的渗透通量236.4g/(m2•h),其对乙醇的分离因子达到16.74。随着料液中乙醇浓度的增大,BPPO膜的分离因子减小,渗透通量增大;而随料液温度的升高,BPPO膜的分离因子及渗透通量均增大。
:In order to get a good membrane material, bromide PPO (BPPO) was made, and BPPO asymmetric membrane was prepared through phase inversion process.The surface and section morphology of the membrane were observed by scanning electron microscopy(SEM).The effects of additive content, BPPO  concentration, feed solution composition and feed solution temperature on the pervaporation performance of dilute ethanol/water solutions were also studied.The results showed that the separation performance of BPPO membrane was excellent.When the additive content was 9.9%, the BPPO concentration was 10%, the feed concentration was 5% and the feed solution temperature was 60℃, the total permeation fiux and the separation factor for ethanol could be 236.4g/(m2•h)and 16.74, respectively.With the increasing of ethanol concentration in the feed solution, the selectivity of BPPO membrane decreased, while the permeation flux increased;with the increasing of feed solution temperature,both the separation factor and the permeation flux increased.

基金项目:
国家自然科学基金项目(20876003,20806001);北京市学术创新团队计划资助(PHR200907105); 北京市教委项目科技创新平台(JX005012201002)

作者简介:
曾小雅(1985-),女,硕士研究生,湖北武汉人,研究方向为膜科学与化工分离技术,010-67391603,Email:zengxiaoya@emails.bjut.edu.cn,通讯地址:北京市朝阳区平乐园100号北京工业大学环境与能源工程学院化工原理实验室 **通讯联系人, Email:jshl@bjut.edu.cn

参考文献:
[1] 翟永辉. 试论我国发展燃料酒精的可行性[J]. 淀粉与淀粉糖, 2001, 1: 19-20.
[2] 王成军, 赵继光. 燃料乙醇工业发展对我国石油消费作用的实证研究[J]. 工业技术经济, 2005, 24(3): 89-90.
[3] 吴青. 聚苯醚及其改性[J]. 塑料科技, 2002, 2: 53-55.
[4] Hamad F, Khulbe K C, Matsuura T. Comparison of gas separation performance and morphology of homogeneous and composite PPO membrane[J]. Journal of Membrane Science, 2005, 256(1-2): 29-37.
[5] Ilinitch O M, Fenelonov V B, Lapkin A A, et al. Intrinsic microporosity and gas transport in polyphenylene oxide polymers[J]. Microporous and Mesoporous Materials, 1999, 31(1-2): 97-110.
[6] 郝建强, 贾连达, 徐纪平. 溴代及胺交联聚苯醚(PPO)膜的气体透过行为[J]. 应用化学, 1990, 7(4): 57-61.
[7] 蒋晓钧, 施艳荞, 陈观文. 溴代聚苯醚膜对有机液/水混合体系的渗透汽化分离[J]. 膜科学与技术, 2000, 20(5): 16-20.
[8] Schauer J, Schwarz H H, Eisold C. Pervaporation and membrane distillation through membranes made of poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Angewandte Makromolekulare Chemie, 1993, 206(1): 193-198.
[9] Schauer J, Bleha M. Pervaporation through membranes made from acyl derivatives of poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Journal of Applied Polymer Science, 1992, 46(10): 1807-1811.
[10] 郝建强, 贾连达, 徐纪平. 聚苯醚的溴化及其对富氧性能的影响[J]. 功能高分子学报, 1989, 2(2): 121-125.
[11] Soney C G, Sabu T. Transport phenomena through polymeric systems[J]. Progress in Polymer Science, 2001, 26(6): 985-1017.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号