质子传导膜制备方法放大与膜性能表征
作者:刘平,青格乐图,郭伟男,陈晓,初晓,王保国
单位: 清华大学化学工程系,北京,100084
关键词: 质子传导膜; 全钒液流电池; 电导率; 电池实验
DOI号:
分类号: TQ152
出版年,卷(期):页码: 2012,32(2):24-29

摘要:
为了满足新能源电池对质子选择性导电膜的需要,提出一种质子传导膜的新型制备工艺,并进行质子传导膜的制备工艺放大。以聚偏氟乙烯(PVDF)和烯丙基磺酸钠(SAS)为原料,成功制备长1000mm、宽800mm的质子传导膜。膜性能测试结果显示,质子传导膜电导率随SAS质量分数变化显著。当SAS质量分数为20%时,膜电导率 ;膜化学稳定性良好,使用Fenton试剂氧化法测得膜剩余质量百分数97.5%;屈服强度23N/mm2,膜爆破强度为2MPa;TGA分析膜分解温度高于400℃。该膜应用于全钒液流电池,自放电实验测得开路电压下降速率为 ,库伦效率93%。研究结果表明膜材料综合性能良好,有望在全钒液流电池产业化过程中得到大规模应用。
This study proposed a novel approach to manufacture proton conductive membranes to meet the requirement of developing battery technology for renewable energy storage. Using polyvinylidene fluoride(PVDF) and sodium methyl allylsulfonate(SAS), a membrane of 1000mm×800mm(Length ×Width)was successfully prepared. Its conductivity apparently changed with SAS composition. When SAS’s mass fraction was 20%, the membrane conductivity reached  . Moreover, the membranes are of advanced performance in chemical resistance and mechanical stability, remaining 97.5% of sample weight after treated in Fenton solution, bursting strength of 2.0MPa, yield strength of 23N/mm2 and thermal degeneration temperature above 400℃. The test of flow battery showed a self-discharge rate of  , columbic efficiency of 93%. The membrane had an overall good performance as a promising separator for the commercialization of vanadium redox flow battery (VRB).

基金项目:
国家自然科学基金(20876086; 21076112);国家“863”课题(2007AA05Z245);国家重点基础研究发展计划(973计划)项目(2010CB227202)

作者简介:
刘平,男,硕士研究生,清华大学化工系,质子传导膜制备研究,p-liu04@mails.tsinghua.edu.cn通信联系人:王保国,教授,清华大学化工系,010-62788777,bgwang@tsinghua.edu.cn

参考文献:
[1]王保国. 新能源领域的质子交换膜研究与应用进展. 膜科学与技术,2010,30(1):1~8.
[2]陈金庆, 王保国, 杨基础. VO2+/H+在阳离子交换膜中的吸附平衡. 清华大学学报(自然科学版), 2009, 49(6):884~887.
[3]Qingtao Luo, Huaming Zhang, Jian Chen, Peng Qian, Yunfeng Zhai. Modi?cation of Na?on membrane using interfacial polymerization for vanadium redox ?ow battery applications. Journal of Membrane Science, 311 (2008): 98~103
[4]Jingyu Xi, Zenghua Wu, Xinping Qiu, Liquan Chen. Na?on/SiO2 hybrid membrane for vanadium redox ?ow battery. Journal of Power Sources, 166 (2007): 531~536
[5]Jie Zeng, Chunping Jiang, Yaohui Wang, etc. Studies on polypyrrole modi?ed na?on membrane for vanadium redox ?ow battery. Electrochemistry Communications, 10 (2008): 372~375
[6]Jingyi Qiu, Jiangfeng Ni, etc. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery. Radiation Physics and Chemistry, 76 (2007): 1703~1707
[7]Huamin Zhang, Xianfeng Lia, Cheng Bi, etc. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox ?ow battery application. Journal of Power Sources, 196 (2011): 482~487
[8]吕正中, 胡嵩麟, 罗绚丽, 武增华,等. 质子交换膜对钒氧化还原液流电池性能的影响. 高等学校化学学报, 28(2007): 145~148
[9]李文琼, 邱新平. 聚偏氟乙烯溶液法接枝苯乙烯磺酸膜的结构与形貌研究. 功能高分子学报, 17(2004): 452~456
[10]龙飞, 陈金庆, 王保国. 全钒液流电池用离子交换膜的制备. 天津工业大学学报, 27(2008): 9~11
[11]王保国, 龙飞, 范永生, 刘平. 一种质子传导膜的制备方法: 中国, 专利号[200910077024.6]
[12]Alessandra Fernicola, Stefania Panero, Bruno Scrosati. Proton-conducting membranes based on protic ionic liquids. Journal of Power Sources, 2008, 178: 591~595

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号