内部热能回收式多效膜蒸馏用于海水淡化及浓盐水深度浓缩
作者:秦英杰12,刘立强1,何菲3,张艳萍3,吴茵2,王世昌1
单位: 1天津大学化工学院, 天津 300072; 2 Chembrane Research & Engineering, Inc., Newark, NJ07023,USA; 3天津凯铂能膜工程技术有限公司, 天津 300308
关键词: 多效膜蒸馏;膜蒸馏;造水比;海水淡化;反渗透浓水;浓盐水;浓缩
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2012,32(2):59-64

摘要:
利用自制的具有高效内部热量回收功能的多效膜蒸馏组件对不同浓度的氯化钠水溶液进行了浓缩实验研究。考察了进料温度、浓度、流速对膜通量、造水比和脱盐率的影响。实验结果表明,料液加热温度T3升高时膜通量和造水比随之明显增加,而脱盐率保持不变;料液流速增加会使膜通量增加,而造水比随之降低,脱盐率几乎不受影响;随着料液浓度的增加,膜的通量和造水比逐渐降低,脱盐率略微减小但影响很小。当料液中氯化钠浓度较低时,该过程的最大膜通量为6.8L/(m2•h),造水比为12.5;当料液中氯化钠浓度大于15%时,膜通量为5.2L/(m2•h),造水比为6.2,脱盐率可达99.99%。实验结果表明多效膜蒸馏技术可有效应用于海水淡化及常规海水淡化过程例如反渗透和多效蒸发过程所副产浓盐水的深度浓缩和淡水生产。
An experimental investigation was carried out on concentrating aqueous solution containing 0.1– 20% sodium chloride by using multi-effect membrane distillation (MEMD) device. Influences of various experimental conditions on water permeate flux, water gained-output-ratio (GOR) and rejection of salt were studied. The experimental result showed that the water permeation flux increased with increase of the feed inlet flow rate, and increased with increase of the heated feed temperature; the water GOR also increased with increase of the heated feed temperature, however, it slightly decreased with increase of the feed inlet flow rate; both the water permeate flux and water GOR decreased with increase of the concentration of sodium chloride in the feed solution; the rejection of salt was hardly affected by these factors. The water permeate flux could reach 6.8L/(m2.h) and the water GOR could reach 12.5 when the concentration of sodium chloride in the feed solution was low; when the salt concentration was higher than 15%, the water permeate flux was still more than 5.2L/(m2.h) and the water GOR was more than 6.2, the rejection of salt could reach 99.99%. Thus multi-effect membrane distillation process could efficiently deal with concentrated aqueous solution.

基金项目:

作者简介:
秦英杰 (1964- ),男, 河北乐亭人,博士,天津大学化工学院,教授,博导,从事膜分离和废水处理研究;电邮:yqin@chembrane.com,电话:022 27890430, 13920403901

参考文献:
(1)任一峰,刘尔静,等. 海水淡化的热法技术及其应用[J],发电设备, 2009,23(2):147-150
(2)赵春霞,顾平,等. 反渗透浓水处理现状与研究进展[J],中国给水排水, 2009,25(18):1-5
(3)E. Drioli, Y. Wu, Membrane distillation: an experimental study, Desalination ,53 (1985): 339-340.
(4)E. Drioli, Y. Wu, V. Calabro, Membrane distillation in the treatment of aqueous solutions, J. Membr. Sci. 33 (1987): 277-278
(5)唐娜,陈明玉,等. 海水淡化浓盐水真空膜蒸馏研究[J],膜科学与技术, 2007,27(6):93-96
(6)J. Gilron, L. M Song, and K. K. Sirkar, Design for Cascade of Crossflow Direct Contact Membrane Distillation, Ind. Eng. Chem. Res. 2007, 46(8):2324-2334
(7)L. M. Song, B. A. Li, and K. K. Sirkar, Direct Contact Membrane Distillation-Based Desalination: Novel Membranes, Large-Scale Studies, and a Model , J. Membr. Sci . 46 (2007) : 2307-2323
(8)Z. Wang, F. Zheng, and S. C. Wang. Experiment study of membrane distillation with brine circulated in the cold side, J. Membr. Sci . 183 (2001) : 171-179
(9)W. L. Gore, R. W. Gore, D. W. Gore, Desalination Device and Process, US Patent 4,545,862.
(10) J. Koschikowski, M. Wieghaus, and M. Rommel., Solar Thermal-Driven Desalination Plants Based on Membrane Distillation, Desalination 156 (2003) 295-304
(11)J. Koschikowski, M. Wieghaus, and M. Rommel. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination. 251 (2010): 125–131
(12) J. H. Hanemaaijer, and J. W. Heuven, Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water, US Patent 6716355, 2004
(13) G.W. Meindersma, C.M. Guijt, and A. B. Haana. Desalination and water recycling by air gap membrane distillation. Desalination. 187 (2006): 291–301
(14) C. M. Guijt, G. W. Meindersma, T. Reith, A. B. Haan, Air Gap Membrane Distillation 1. Modeling and Mass Transport Properties for Hollow Fibre Membranes, Separation and Purification Technology, 43 (2005) 233-244.
(15) C. M. Guijt, G. W. Meindersma, T. Reith, A. B. Haan, Air Gap Membrane Distillation 2. Model Validation and Hollow Fibre Module Performance Analysis, Separation and Purification Technology 43 (2005) 245-255.
(16)L.-H. Cheng, P.-C. Wu, and J.-H. Chen, Numerical Simulation and Optimal Design of AGMD-Based Hollow Fiber Modules for Desalination, Ind. Eng. Chem. Res. 2009, 48, 4948-4959

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号