聚酰亚胺低温热解炭膜的制备及气体分离性能 |
作者:董军营1,李琳1,陈安亮1,曹越1,王虹2, 王同华 |
单位: 1.大连理工大学 化工学院 精细化工国家重点实验室 炭材料研究室 膜科学与技术研究开发中心,大连 116012;2.天津工业大学中空纤维膜材料与膜过程省部共建国家重点实验室培育基地,天津 300160;3.中国科学院 大连化学物理研究所,大连 116023 |
关键词: 聚酰亚胺;低温热解;结构;气体分离 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2012,32(3):22-27 |
摘要: |
以商业化的Kapton型聚酰胺酸为前驱体制备了低温热解炭膜,采用热重质谱(TG- MS)、红外光谱 ( FTIR)、 元素分析 ( EA )、X 射线衍射 (XRD )和气体渗透等手段对不同温度、不同气体氛围下制备出的膜的化学结构、微结构和气体分离性能变化规律进行了研究。结果表明:低温热解温度和气体氛围对炭膜的化学结构、微结构存在着显著的影响,进而影响到炭膜的气体分离性能,表现为450℃之前气体渗透系数变化很小,450℃以后气体渗透系数逐渐增大,分离系数逐渐下降,同时空气促进了热分解和热交联反应的进行,炭膜具有较大的气体渗透系数和较小的气体分离系数。 |
Low temperature pyrolytic membranes were prepared from Kapton-Type Polyimide. TG-MS, FTIR, EA, XRD and gas permeability were used to character the change of chemical structure and microstructure, the gas separation performance during the low temperature pyrolysis at different temperatures and atmosphere. Results show that pyrolytic temperature and atmosphere have a great impact on chemical and carbon structure and the gas separation performance of low temperature carbon membrane. There is no evident variation of gas permeability before 450℃ and the gradual enlargement in gas permeability and decrease in gas selectivity with the increase of temperature after 450℃. The carbon membranes prepared in air have a larger gas permeability and lower selectivity than those prepared in nitrogen. |
基金项目: |
国家自然科学基金面上与重点项目(20776024,20976021,20836006), 国家863项目2009AA03Z215,天津工业大学中空纤维膜材料与膜过程省部共建国家重点实验室培育基地开放基金 |
作者简介: |
董军营(1984-),男,山东人,硕士生,从事炭材料及膜材料的研究 |
参考文献: |
[1] 邱英华,王同华,宋成文.热解氛围对聚丙烯腈分离炭膜微结构的影响.[J].新型炭材料, 2006,2:161-166 [2] Kusuki Y, Shimazaki H, Tanihara N, et al. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane.[J].J.Membr.Sci., 1997, 134 (2):245–253. [3] Centeno TA, Vilas J L, Fuertes A B. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation.[J].J.Membr.Sci, 2004,228 :45–54 [4] Choe C R,Lee H K. Effect of processing parameters on the mechanical properties of carbonized phenolic resin.[J].Carbon,1992,30:247-249. [5] Bruck S D. Thermal degradation of an aromatic polypyromellitimide in air and vacuum I — Rates and activation energies.[J].Polymer,1964,5:435 [6]Crossland T B, Knight G J, Wright W W. Thermal degradation of some polyimides.[J].British polymer Journal, 1987,19(3-4):291-301. [7] Bos A., Punt I G M, Wessling M, et al. Suppression of CO2-plasticization by semi interpenetrating polymer network formation.[J].J. Polym. Sci. B Polym. Phys., 1998,36 (9): 1547–1556. [8] Barsema J N, Klijnstra S D , Balster J H,et al. Intermediate polymer to carbon gas separation membranes based on Matrimid PI. [J].J. Membr.Sci., 2004, 238 (1-2):93-102. [9]Shao L, Chung T S, Pramoda K P. The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon.[J].Micro. Mesopor. Mater., 2005, 84 (1-3):59-68. [10]Tin P S, Xiao Y C, Chung T S. Polyimide-carbonized membranes for gas separation: Structural, composition, and morphological control of precursors.[J].Separation & Purification Reviews, 2007, 35:285–318. [11]王同华,呼立红,刘庆岭等. 预氧化处理对聚醚酰亚胺基炭膜结构与气体分离性能的影响.[J]. 新型炭材料, 2008,23:264-258. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号