亚临界通量操作对黄连解毒汤超滤过程的影响 |
作者:刘红波,李 博,郭立玮 |
单位: 南京中医药大学 中药复方分离工程重点实验室,江苏 南京210029 |
关键词: 中药水提液;超滤;亚临界通量 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2013,33(3):81-87 |
摘要: |
将临界通量概念引入中药水提液复杂体系,以中药复方黄连解毒汤水提液为实验对象,通过测定中空纤维膜超滤过程的临界通量,考察了亚临界通量操作下的膜系统运行状态。结果表明,在错流流速0.15 m/s,压力0.04 MPa的亚临界通量操作下,膜稳定通量与初始通量相比降低了5.5%;而在0.07 MPa和0.10 MPa的超临界通量操作下,其值分别为32.1%、42.2%。相对稳定膜污染阻力在0.04 MPa 、0.07 MPa和0.10 MPa条件下分别为3.0、7.5和15.8。亚临界通量操作对于优化操作条件,有效降低膜污染,节约生产成本,指导中药水提液膜过滤精制的实际生产应用有着重要的意义。 |
The concept of critical flux is introduced into the complex system of Chinese herb extractions.The critical flux of the traditional Chinese medicine compound Huanglian jiedu decoction is determined in the hollow fiber membrane ultrafiltration process and the sub-critical flux operation status is studied.The results show that under the sub-critical flux operation when the pressure is 0.04 MPa and the cross-flux equals 0.15 m/s,the stable permeate flux is only reduced by 5.5 % compared to the initial flux.However, under the ultra-critical flux operation when the pressure is 0.07 MPa and 0.10 MPa,the values are 32.1 % and 42.2 % respectively.The relative stability fouling resistance under the pressure of 0.04 MPa、0.07 MPa and 0.10 MPa is 3.0、7.5 and 15.8 respectively.Sub-critical flux operation of great significance to optimize the operating conditions to reduce membrane fouling ,saving production costs ,and guide the actual refining production process of Chinese herb extractions using membrane filtration technology. |
基金项目: |
国家自然科学基金(30572374,30873449,30973950);中药制药过程新技术国家重点实验室开放基金资助(SKL2010Z0101) |
作者简介: |
刘红波(1987-),男,河南周口,硕士生在读,从事以膜技术为主体的中药复方分离工程研究。E-mail:1304532099@qq.com 参考文献 |
参考文献: |
[1]董 强,刘立敏,林淑钦,等.中药复方水提液澄清过程中陶瓷膜污染的防治研究[J].膜科学与技术,2004,24(6):34-37. [2]乐 康,付廷明,郭立玮.中药水提液膜污染问题防治方法研究进展[J].现代中药研究与实践,2010,24(2):74-77. [3]Field R W, Wu D,Howell J A ,et al.Critical flux concept for microfiltration Fouling[J]. Journal of Membrane Science,1995,100: 259-272. [4] Neal P R, Li H, Fane A G,et al.The effect of filament orientation on critical flux and particle deposition in spacer-filled channels[J].J Membr Sci,2003,214(2):165-178. [5]Defrance L,Jaffrin M Y.Comparison between filtrationsat fixed transmembrane pressure and fixed permeate flux:application to a membrane bioreactor used for wastewater treatment[J]. J Membr Sci,1999,152(2):203-210. [6] Bacchin P,Aimar P,Sanchez V. Model for colloidal fouling of membranes [J]. Aiche Journal,1995,41:368-377. [7] Howell J A.Sub-critical flux operation of microfiltration[J].Journal of Membrane Science,1995,107: 165-171. [8]陈丽静,孙秀梅,张兆旺,等.3种方法制备的黄连解毒汤提取液指纹图谱比较[J].中草药,2012,43(3):487-491. [9]汪 涛.HPLC法同时测定黄连解毒汤中3种有效成分的含量[J].中国药房,2009,20(18):1410-1411. [10]黄春燕,姜莉莉,王玮,等.RP-HPLC同时测定黄连解毒汤7种活性成分[J].浙江预防医学,2011,23(11):15-19. [11]Mikulášek P,Doleˇcek P,šmidová D,et al. Crossflow microfiltration of mineral dispersions using ceramic membranes[J]. Desalination,2004,163 (1–3): 333–343. [12]Seidel A,Elimelech M. Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control[J]. Journal of Membrane Science ,2002,203(1-2):245-255. [13] Gander M,Jefferson B,Judd S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations[J]. Separation and Purification Technology,2002,18:119-130. [14] Bacchin P,Aimar P,Field R W .Critical and sustainable fluxes: theory, Experiments and applications[J].Journal of Membrane Science,2006, 281(1-2):42-69. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号