ZIF-8填充聚硅氧烷膜的制备及渗透汽化水中分离正丁醇 |
作者:张春芳,董亮亮,白云翔,顾瑾,孙余凭 |
单位: 江南大学食品胶体与生物技术教育部重点实验室 化学与材料工程学院 无锡 214122 |
关键词: 聚二甲基硅氧烷膜;ZIF-8;渗透汽化;正丁醇;生物燃料 |
DOI号: |
分类号: TQ027.3 |
出版年,卷(期):页码: 2013,33(4):88-93 |
摘要: |
两步法制备了ZIF-8填充聚二甲基硅氧烷(PDMS)渗透汽化膜PDMS/ZIF-8,用以分离水中正丁醇。并对该膜的化学结构、形貌及热稳定性进行了表征。结果表明:该膜对正丁醇有很高的选择渗透性,随着ZIF-8添加量的增加,分离因子先增加后下降,而总通量单调下降。当ZIF-8添加量为2wt%时(PDMS/ZIF-8-2膜),分离因子达到最高。另一方面,随着操作温度的上升,PDMS/ZIF-8-2膜的通量和分离因子都增加。在60oC,料液浓度为0.96wt%时,PDMS/ZIF-8-2膜的分离因子及通量最高可达49.24和8.43 kg?m/(m2h)。 |
ZIF-8 filled polydimethylsiloxane (PDMS) membranes, PDMS/ZIF-8, were prepared by a two-step polymerization process, which were used as membrane material to recover n-butanol from aqueous solution by pervaporation (PV). The membranes demonstrated high n-butanol permselectivity and with the increase of ZIF-8 loading, the separation factor increased initially and then decreased, while the total flux decreased. The PDMS/ZIF-8 membranes containing 2 wt% ZIF-8, PDMS/ZIF-8-2, showed the highest separation factor. On the other hand, the separation factor and total flux of PDMS/ZIF-8-2 membrane increased with the increase of temperature. The separation factor and total ?ux reached 49.24 and 8.43 kg?m/(m2h), respectively, at 60 oC when the feed concentration of n-butanol is 0.96 wt%. |
基金项目: |
国家自然科学青年基金项目(21106053)和中央高校基本科研业务费专项资金(JUSRP311A01)资助; |
作者简介: |
张春芳(1977-),女,内蒙古人,博士,副教授,主要研究方向,膜分离.*通讯联系人,E-mail:baisir223@163.com |
参考文献: |
[1]顾瑾,邓利容,白云翔,等.VTES交联PDMS渗透汽化膜分离水中乙醇性能研究[J]. 膜科学与技术, 2010, 30(2): 19-24. [2]Schnabel S, Roizard D, Nguyen T, et al. Synthesis of novel block siloxane polymers for the removal of butanols from aqueous feed solutions[J]. Colloids Surfaces A: Physicochem Eng Aspects, 1998, 138(2): 335-343. [3]Fouad E A, Feng X S. Use of pervaporation to separate butanol from dilute aqueous solutions: effects of operating conditions and concentration polarization [J]. J Membr Sci, 2008, 323(2): 428-435. [4]Srinivasan K, Palanivelu K, Gopalakrishnan A N. Recovery of 1-butanol from a model pharmaceutical aqueous waste by pervaporation[J]. Chem Eng Sci, 2007, 62(11): 2905-2914. [5]Fu Y, Hu C, Lee K, et al. Separation of ethanol/water mixtures by pervaporation through zeolite-filled polysulfone membrane containing 3-aminopropyltrimethoxysilane[J]. Desalination, 2006, 193(1-3): 119-128. [6]Fouad E A, Feng X S. Pervaporative separation of n-butanol from dilute aqueous solutions using silicalite-filled poly(dimethyl siloxane) membranes[J]. J Membr Sci, 2009, 339(1-2): 120-125. [7]Trzpit M, Soulard M, Patarin J, et al. The effect of local defects on water adsorption in silicalite-1 zeolite: a joint experimental and molecular simulation study[J]. Langmuir, 2007, 23(20): 10131-10139. [8]Ma S Q, Sun D F, Simmons J M, et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake [J]. J Am Chem Soc, 2008, 130(3): 1012-1016. [9]Remi J C S, Rémy T, Hunskerken V V, et al. Biobutanol Separation with the Metal–Organic Framework ZIF-8[J]. ChemSusChem, 2011, 8(4): 1074-1077. [10]Ordoñez M J C, Balkus Jr K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes[J]. J Membr Sci, 2010, 361(1-2): 28-37. [11]白云翔,杨乐,顾瑾,等. ZSM-5沸石填充聚氨酯膜的制备及渗透汽化分离水中乙酸异丙酯[J]. 化工进展, 2011, 30(9): 1919-1925. [12]Hayashi H, Cote A P, Furukawa H, et al. Zeolite a imidazolate frameworks[J]. Nat Mater, 2007, 7(6): 501-506. [13]Yi S L, Su Y, Wan Y H. Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution[J]. J Membr Sci, 2010, 360(1-2): 341-351. [14]Yeom C K, Kim H K, Rhim J W. Removal of trace VOCs from water through PDMS membranes and analysis of their permeation behaviors[J]. J Appl Polym Sci, 1999, 4(73): 601-611. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号