反渗透复合膜最新研究进展 |
作者:张所波, 张奇峰,李胜海 |
单位: 中国科学院长春应用化学研究所,长春,130022 |
关键词: 反渗透膜;复合膜;界面聚合;纳米杂化;耐氯氧化性 |
DOI号: |
分类号: |
出版年,卷(期):页码: 2013,33(4):1-6 |
摘要: |
反渗透膜在海水淡化、超纯水制备、污水处理、制药及生物技术等领域得到了广泛应用。目前,最成功的反渗透膜是通过界面聚合方法制备的、以交联聚酰胺为分离皮层的复合膜。交联聚酰胺皮层的结构和性质对最终反渗透膜的分离性能起关键作用。本文简要介绍了界面聚合复合膜的形成过程和结构、 新型界面聚合功能单体、 界面聚合反应添加剂、纳米杂化反渗透复合膜、高耐氯氧化性反渗透膜,以及反渗透复合膜表征方法创新等方面的研究进展和发展趋势。 |
基金项目: |
国家重点基础研究发展计划(973计划)(2009CB623401, 2012CB932802),国家高技术研究发展计划(863计划)重大项目(2012AA03A601), 青年科学基金项目(51203151)。 |
作者简介: |
第一作者简介:张奇峰,1982年生,男,内蒙古呼和浩特人,博士,助理研究员,2011年6月起在中国科学院长春应用化学研究所工作,从事新型高分子分离膜材料的开发和制膜工艺研究。〈qfzhang@ciac.jl.cn〉 通讯联系人简介: 张所波,1963年生, 男, 吉林省白山人, 研究员, 博导, 中科院百人计划,国家杰出青年基金获得者。主要从事高分子分离膜材料合成研究。〈sbzhang@ciac.jl.cn〉 |
参考文献: |
[1] 高从堦. 杨尚保. 反渗透复合膜技术进展和展望. [J]. 膜 科 学 与 技 术,2011, 31 (3): 1~4。 [2] 李磊. 新型反渗透、纳滤复合膜材料的制备与性能 [D]: [博士学位论文]. 长春:中国科学院长春应用化学研究所,2009. 1~13。 [3] Kim K-J, Chowdhury G, Matsuura T. Low pressure reverse osmosis performances of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) thin film composite membranes: effect of coating conditions and molecular weight of polymer. [J]. J Membr Sci, 2000, 179: 43~52. [4] Sofrea M L, Nunes S. Composite nanofiltration membranes prepared by in situ polycondensation of amines in a poly(ethylene oxide-b-amide) layer. [J]. J Membr Sci, 1977, 135:179~186. [5] Ito Y, Ochiai Y, Park Y S. pH-Sensitive Gating by Conformational Change of a Polypeptide Brush Grafted onto a Porous Polymer Membrane. [J]. J Am Chem Soc, 1997, 119: 1619~1623. [6] Morgan P W. Condensation polymers: By Interfacial and solution methods [M]. New York: John Wiely and Sons, 1965. [7] Morgan P W. In Encyclopedia of Polymer Science and Engineering [M]. New York: John Wiely and Sons, 1985,8: 221. [8] Hoffmann K, Tieke B. Layer-by-layer assembled membranes containing hexacyclen-hexaacetic acid and polyethyleneimine N-acetic acid and their ion selective permeation behaviour. [J]. J Membr Sci, 2009, 341: 261~267. [9] Phillip W A, Neill B O, Rodwogin M, et al. Self-Assembled Block Copolymer Thin Films as Water Filtration Membranes. [J]. Acs Applied Materials & Interfaces, 2010, 2: 847~853. [10] Morgan P W, Kwolek S L. Interfacial polycondensation. II. Fundamen polymer formation at liquid interfaces. [J]. J Polym Sci, 1959, XL: 299~327. [11] MacRitchie F. Mechanism of interfacial polycondensation. [J]. Trans Faraday Soc, 1968, 65: 2503~2507. [12] Karode S K, Kulkarni S S, Suresh A K, et al. New insights into kinetics and thermodynamics of interfacial polymerization.[J]. Chem Eng Sci, 1998, 53: 2649~2663. [13] Yadav S K, Khilar K C, Suresh A K. Microencapsulation in polyurea shell: kinetics and film structure. [J]. AIChE J, 1996, 42: 2616~2626. [14] Ji J, Dickson J M, Childs R F, et al. Mathematical model for the formation of thin-film composite membranes by interfacial polymerization: porous and dense films. [J]. Macromolecules, 2000, 33: 624~633. [15] 于型伟. 界面聚合法制备分离CO2复合膜及成膜过程研究[D]: [博士学位论文]. 天津: 天津大学,2011. 116~119. [16] Yuan F, Wang Z, Yu X, et al. Visualization of the Formation of Interfacially Polymerized Film by an Optical Contact Angle Measuring Device. [J]. J Phys Chem C, 2012, 116: 11496~11506. [17] Wamser C C, Gilbert M I. Detection of Surface Functional Group Asymmetry inInterfacially-Polymerized Films by Contact Angle Titrations. [J]. Langmuir, 1992, 8: 1608~1614. [18] Freger V, Srebnik S. Mathematical model of charge and density distributions in interfacial polymerization of thin films. [J]. J Appl Polym Sci, 2003, 88: 1162~-1169. [19] Pacheco F A, Pinnau I, Reinhard M, et al. Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques. [J]. J Membr Sci, 2010, 358: 51~59. [20] Coronell O, Marinas B J, and Cahill D G. Depth Heterogeneity of Fully Aromatic Polyamide Active Layers in Reverse Osmosis and Nanofiltration Membranes. [J]. Environ Sci Technol, 2011, 45: 4513~4520. [21] 俞三传. 界面聚合反渗透复合膜材料及其表面修饰. [J]. 膜科学与技术,2011, 31 (3):172~175. [22] Zhou Y, Yu S, Gao C, et al. Preparation and characterization of polyamide- urethane thin- film composite membranes. [J]. Desalination, 2005, 180: 189~196. [23] Liu L, Yu S, Gao C, et al. Study on a novel polyamide- urea reverse osmosis composite membrane (ICIC MPD) ( I ), Preparation and characterization of ICIC MPD membrane. [J]. J Membr Sci, 2006, 281: 88~ 94. [24] Yu S, Liu M, Gao C, et al. Aromatic-cycloaliphatic polyamide thin- film composite membrane with improved chlorine resistance prepared from m- phenylenediamine-4-methyl and cyclohexane- 1, 3, 5-ricarbonylchlo ride. [J]. J Membr Sci, 2009, 344:155~ 164. [25] Li L, Zhang S, Zhang X, et al. Polyamide thin film composite membranes prepared from 3,4,5-biphenyl triacyl chloride, 3,3,5,5-biphenyl tetraacyl chloride and m-phenylenediamine. [J]. J Membr Sci, 2007, 289: 258~267. [26] Li L, Zhang S, Zhang X, et al. Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine. [J]. J Membr Sci, 2008, 315: 20~27. [27] Li L, Zhang S, Zhang X, et al. Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine. [J]. J Membr Sci, 2009, 335: 133~139. [28] Kwak S Y, Jung S G, and Kim S H. Structure-Motion-Performance Relationship of Flux-Enhanced Reverse Osmosis (RO) Membranes Composed of Aromatic Polyamide Thin Films. [J]. Environ Sci Technol, 2001, 35:4334~4340. [29] Duan M, Wang Z, Xu J, et al. Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance. [J]. Separation and Purification Technology, 2010, 75: 145~155. [30] Kong C, Kanezashi M, Yamomoto T, et al. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination. [J]. J Membr Sci, 2010, 362: 76~80. [31] Jeong B-H, Hoek E M V, Yan Y, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. [J]. J Membr Sci, 2007, 294: 1~7. [32] Kong C, Shintani T, and Tsuru T. ‘‘Pre-seeding’’-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification. [J]. New J Chem, 2010, 34: 2101~2104. [33] Zhang L, Shi G-Z, Qiu S. Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. [J]. Desalination and Water Treatment, 2011, 34: 19–24. [34] Tiraferri A, Vecitis C D, and Elimelech M. Covalent Binding of Single-Walled Carbon Nanotubes to Polyamide Membranes for Antimicrobial Surface Properties. [J]. ACS Appl Mater. Interfaces, 2011, 3: 2869~2877. [35] Junwoo P, Kim C W, Hyun S. Enhancement of Chlorine Resistance in Carbon Nanotube Based Nanocomposite Reverse Osmosis Membranes. [J]. Desalination and Water Treatment, 2010, 15: 198–204. [36] Kim E-S, Hwang G, El-Din M G, et al. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. [J]. J Membr Sci, 2012,394-395: 37~48. [37] Park H B, Freeman B D, Zhang Z-B, et al. Highly Chlorine-Tolerant Polymers for Desalination. [J]. Angew Chem Int Ed, 2008, 47: 6019~6024. [38] Kim Y-J, Lee K-S, Jeong M-H, et al. Highly chlorine-resistant end-group crosslinked sulfonated-fluorinated poly(arylene ether) for reverse osmosis membrane. [J]. J Membr Sci, 2011, 378: 512~519. [39] Colquhoun H M, Chappell D, Lewis A L, et al. Chlorine tolerant, multilayer reverse-osmosis membranes with high permeate flux and high salt rejection. [J]. J Mater Chem, 2010, 20: 4629–4634. [40] Chen Z, Ito K, Yanagishita H, et al. Correlation Study between Free-Volume Holes and Molecular Separations of Composite Membranes for Reverse Osmosis Processes by Means of Variable-Energy Positron Annihilation Techniques. [J]. Journal of Physcial Chemistry C, 2011,115: 18055-18060. [41] Kim S H, Kwak S Y, and Suzuki T. Positron Annihilation Spectroscopic Evidence to Demonstrate the Flux-Enhancement Mechanism in Morphology-Controlled Thin-Film-Composite (TFC) Membrane. [J]. Environ Sci Technol, 2005, 39: 1764-1770. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号