陶瓷膜表面性质研究进展
作者:范益群 邢卫红
单位: 南京工业大学 化学化工学院, 材料化学工程国家重点实验室, 南京 210009
关键词: 陶瓷膜;表面性质;渗透通量;截留率;抗污染
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2013,33(5):1-7

摘要:
陶瓷膜表面性质是影响陶瓷膜性能的重要因素, 本文介绍了陶瓷膜表面性质的调控方法及不同表面性质陶瓷膜在液体分离体系中的应用, 重点分析了膜分离过程中表面性质(荷电性、亲疏水性)对陶瓷膜渗透性能、截留性能和抗污染性能的影响, 并展望了陶瓷膜表面性质的未来研究方向和发展前景.
Surface properties have a great impact on the membrane performance of ceramic membranes. This paper provided an overview on surface modification of ceramic membranes and applications of the modified ceramic membranes in liquid separation. The influence of surface properties, such as surface charge, surface hydrophilicity and surface hydrophobicity, on the permeability, retention rate and anti-fouling performance in filtration process was emphasized here. The development trend and prospect on surface properties of ceramic membranes was also briefly discussed.

基金项目:
国家“863”计划课题(2012AA03A606)

作者简介:
范益群(1968-), 男, 博士,教授,江苏丹阳人,主要研究方向为膜分离。 *通讯联系人(yiqunfan@njut.edu.cn)

参考文献:
[1] 范益群, 漆虹, 徐南平. 多孔陶瓷膜制备技术研究进展[J]. 化工学报, 2013, 64(1): 107-115.
[2] Gestel T V, Vandecasteele C, Buekenhoudt A, et al. Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability[J]. Journal of Membrane Science, 2002, 207: 73-89.
[3] 徐南平. 面向应用过程的陶瓷膜材料设计、制备与应用[M]. 北京: 科学出版社, 2005.
[4] 邢卫红, 仲兆祥, 景文珩, 等. 基于膜表面与界面作用的膜污染控制方法[J]. 化工学报, 2013, 64(1): 173-181.
[5] Leger C, Lira H D, Paterson R. Preparation and properties of surface modified ceramic membranes .Part Ⅱ. Gas and liquid permeabilities of 5 nm alumina membranes modified by a monolayer of bound polydimethylsiloxane (PDMS) silicone oil[J]. Journal of Membrane Science, 1996, 120(1): 135-146.
[6] Sah A, Castricum H L, Bliek A, et al. Hydrophobic modification of γ-alumina membranes with organochlorosilanes[J]. Journal of Membrane Science, 2004, 243(1-2): 125-132.
[7] Kuraoka K, Kakitani T, Suetsugu T, et al. Methanol vapor separation through the silica membrane prepared by the CVD method with the aid of evacuation[J]. Separation and Purification Technology, 2001, 25(1-3): 161-166.
[8] Atwater J E, Akse J R. Oxygen permeation through functionalized hydrophobic tubular ceramic membranes[J]. Journal of Membrane Science, 2007, 301(1-2): 76-84.
[9] Oh S, Kang T, Kim H, et al. Preparation of novel ceramic membranes modified by mesoporous silica with 3-aminopropyltriethoxysilane (APTES) and its application to Cu2+ separation in the aqueous phase[J]. Journal of Membrane Science, 2007, 301(1-2): 118-125.
[10] 李倩, 王野, 王晓琳. 两性离子在高分子膜表面功能化改性中的研究进展[J]. 高分子通报, 2012, (3): 1-7.
[11] Jimbo T, Tanioka A, Minoura N. Characterization of an Amphoteric-Charged Layer Grafted to the Pore Surface of a Porous Membrane[J]. Langmuir, 1998, 14: 7112-7118.
[12] Moritz T, Benfer R, Arki P, et al. Investigation of ceramic membrane materials by streaming potential measurements[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 47: 25-33.
[13] Ricq L, Pierre A, Reggiani J C, et al. Use of electrophoretic mobility and streaming potential measurements to characterize electrokinetic properties of ultrafiltration and microfiltration membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138: 301-308.
[14] Fievet P, Sbaï M, Szymczyk A, et al. A New Tangential Streaming Potential Setup for the Electrokinetic Characterization of Tubular Membranes[J]. Separation Science and Technology, 2004, 39(13): 2931-2949.
[15] Möckel D, Staude E, Cin M D, et al. Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potential of carboxylated polysulfone membranes[J]. Journal of Membrane Science, 1998, 145: 211-222.
[16] Moritz T, Benfer S, Árki P, et al. Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic membranes[J]. Separation and Purification Technology, 2001, 25: 501-508.
[17] Zhang Q, Fan Y, Xu N. Effect of the surface properties on filtration performance of Al2O3–TiO2 composite membrane[J]. Separation and Purification Technology, 2009, 66(2): 306-312.
[18] 高斌, 舒莉, 邢卫红, 等. 预处理剂对陶瓷膜表面性质及渗透通量的影响[J]. 膜科学与技术, 2004, 24(6): 15-19.
[19] Zhao Y, Xing W, Xu N, et al. Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension[J]. Journal of Membrane Science, 2005, 254(1-2): 81-88.
[20] 吴也凡, 罗凌虹, 石纪军, 等. ZrO2纳米晶涂层修饰改性的陶瓷微滤膜性能[J]. 稀有金属材料与工程, 2009, 38: 631-634.
[21] Gentleman M M, Ruud J A. Role of hydroxyls in oxide wettability[J]. Langmuir, 2010, 26(3): 1408-1411.
[22] Liang S, Kang Y, Tiraferri A, et al. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles[J]. ACS Appl Mater Interfaces, 2013, 5(14): 6694-6703.
[23] Xiang T, Yue W W, Wang R, et al. Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility[J]. Colloids Surf B Biointerfaces, 2013, 110: 15-21.
[24] Wavhal D S, Fisher E R. Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization[J]. Journal of Membrane Science, 2002, 209: 255-269.
[25] Mendret J, Hatat-Fraile M, Rivallin M, et al. Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants[J]. Separation and Purification Technology, 2013, 111: 9-19.
[26] Goei R, Dong Z, Lim T T. High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: Fabrication, characterizations and performances[J]. Chemical Engineering Journal, 2013, 228: 1030-1039.
[27] Zhou J-e, Chang Q, Wang Y, et al. Separation of stable oil–water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane[J]. Separation and Purification Technology, 2010, 75(3): 243-248.
[28] Vatanpour V, Madaeni S S, Rajabi L, et al. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes[J]. Journal of Membrane Science, 2012, 401-402: 132-143.
[29] Vatanpour V, Madaeni S S, Moradian R, et al. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite[J]. Journal of Membrane Science, 2011, 375(1-2): 284-294.
[30] Ochoa N. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes[J]. Journal of Membrane Science, 2003, 226(1-2): 203-211.
[31] Mittal P, Jana S, Mohanty K. Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater[J]. Desalination, 2011, 282: 54-62.
[32] Faibish R S, Cohen Y. Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions[J]. Journal of Membrane Science, 2001, 185: 129-143.
[33] Xue Z, Wang S, Lin L, et al. A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation[J]. Advanced Materials, 2011, 23(37): 4270-4273.
[34] He H, Jing W, Xing W, et al. Improving protein resistance of α-Al2O3 membranes by modification with POEGMA brushes[J]. Applied Surface Science, 2011, 258(3): 1038-1044.
[35] Rovira-Bru M, Giralt F, Cohen Y. Protein Adsorption onto Zirconia Modified with Terminally Grafted Polyvinylpyrrolidone[J]. J Colloid Interface Sci, 2001, 235(1): 70-79.
[36] Zhao Y H, Wee K H, Bai R. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method[J]. Journal of Membrane Science, 2010, 362(1-2): 326-333.
[37] Ida J-i, Matsuyama T, Yamamoto H. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP–CVD[J]. Biochemical Engineering Journal, 2000, 5(3): 179-184.
[38] Tadanaga K, Katata N, Minami T. Super-Water-Repellent Al2O3 Coating Films with High Transparency[J]. Journal of the American Ceramic Society, 1997, 80(4): 1040-1042.
[39] Santos L R B, Belin S, Briois V, et al. Study of structural surface modified tin oxide membrane prepared by sol-gel route sintered at 400oC[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 171-175.
[40] Bothun G D, Peay K, Ilias S. Role of tail chemistry on liquid and gas transport through organosilane-modified mesoporous ceramic membranes[J]. Journal of Membrane Science, 2007, 301(1-2): 162-170.
[41] 晏良宏, 匙芳廷, 蒋晓东, 等. 疏水疏油二氧化硅增透膜的制备[J]. 无机材料学报, 2007, 22(6): 1247-1250.
[42] Schondelmaier D, Cramm S, Klingeler R, et al. Orientation and Self-Assembly of Hydrophobic Fluoroalkylsilanes[J]. Langmuir, 2002, 18(16): 6242-6245.
[43] Krajewski S R, Kujawski W, Dijoux F, et al. Grafting of ZrO2 powder and ZrO2 membrane by fluoroalkylsilanes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 243(1-3): 43-47.
[44] Kolsch P, Sziladi M, Noack M, et al. Ceramic membranes for water separation from organic solvents[J]. Chemical Engineering & Technology, 2002, 25(4): 357-362.
[45] Alami Younssi S, Iraqi A, Rafiq M, et al. γ Alumina membranes grafting by organosilanes and its application to the separation of solvent mixtures by pervaporation[J]. Separation and Purification Technology, 2003, 32(1–3): 175-179.
[46] Gao N, Li M, Jing W, et al. Improving the filtration performance of ZrO2 membrane in non-polar organic solvents by surface hydrophobic modification[J]. Journal of Membrane Science, 2011, 375(1-2): 276-283.
[47] Larbot A, Gazagnes L, Krajewski S, et al. Water desalination using ceramic membrane distillation[J]. Desalination, 2004, 168: 367-372.
[48] Hyun S H, Jo S Y, Kang B S. Surface modification of γ-alumina membranes by silane coupling for CO2 separation[J]. Journal of Membrane Science, 1996, 120(2): 197-206.
[49] Abidi N, Sivade A, Bourret D, et al. Surface modification of mesoporous membranes by fluoro-silane coupling reagent for CO2 separation[J]. Journal of Membrane Science, 2006, 270(1–2): 101-107.
[50] Yazawa T, Kishimoto M, Inoue T, et al. Preparation of CO2-selective separation membranes with highly chemical and thermal stability prepared from inorganic-organic nanohybrids containing branched polyethers[J]. Journal of Materials Science, 2007, 42(2): 723-727.
[51] Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentration of fruit juices: a review[J]. Journal of Food Engineering, 2004, 63(3): 303-324.
[52] Camacho L, Dumée L, Zhang J, et al. Advances in Membrane Distillation for Water Desalination and Purification Applications[J]. Water, 2013, 5(1): 94-196.
[53] Krajewski S R, Kujawski W, Bukowska M, et al. Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions[J]. Journal of Membrane Science, 2006, 281(1-2): 253-259.
[54] Gazagnes L, Cerneaux S, Persin M, et al. Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes[J]. Desalination, 2007, 217(1–3): 260-266.
[55] Khemakhem S, Amar R B. Modification of Tunisian clay membrane surface by silane grafting: Application for desalination with Air Gap Membrane Distillation process[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 387(1-3): 79-85.
[56] Kujawa J, Kujawski W, Koter S, et al. Membrane distillation properties of TiO2 ceramic membranes modified by perfluoroalkylsilanes[J]. Desalination and Water Treatment, 2013, 51(7-9): 1352-1361.
[57] 李梅, 高能文, 范益群. 疏水陶瓷膜脱除油中水分的研究[J]. 膜科学与技术, 2012, 32(3): 86-90.
[58] 柯威, 高能文, 李梅, 等. 疏水性Al2O3膜表面的化学稳定性[J]. 南京工业大学学报, 2010, 32(6): 45-49.
[59] Su C, Xu Y, Zhang W, et al. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water[J]. Applied Surface Science, 2012, 258(7): 2319-2323.
[60] Meng T, Xie R, Ju X J, et al. Nano-structure construction of porous membranes by depositing nanoparticles for enhanced surface wettability[J]. Journal of Membrane Science, 2013, 427: 63-72.
[61] Ahmad N A, Leo C P, Ahmad A L. Superhydrophobic alumina membrane by steam impingement: Minimum resistance in microfiltration[J]. Separation and Purification Technology, 2013, 107: 187-194.
[62] Li F, Yang Y, Fan Y, et al. Modification of ceramic membranes for pore structure tailoring: The atomic layer deposition route[J]. Journal of Membrane Science, 2012, 397-398: 17-23.
[63] 李丁, 高保娇, 许文梅. 采用新型分子表面印迹技术构建手性空穴实现对手性药物对映体的分子识别与高效拆分[J]. 化学学报, 2011, 69(24): 3019-3027.
[64] 田秀淑, 任书霞, 梅世刚. 离子吸附法制备载银Al2O3抗菌剂的研究[J]. 中国陶瓷, 2010, 46(6): 17-19.
[65] Cao X, Jing W, Xing W, et al. Fabrication of a visible-light response mesoporous TiO2 membrane with superior water permeability via a weak alkaline sol-gel process[J]. Chem. Commun., 2011, 47(12): 3457-3459.
[66] 王辉, 周守勇, 李梅生, 等. pH敏感型管式陶瓷复合膜的制备[J]. 膜科学与技术, 2012, 32(4): 26-31.
[67] Chu L Y, Park S H, Yamaguchi T, et al. Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates[J]. Journal of Membrane Science, 2001, 192: 27-39.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号