膜式氧合器中聚砜非对称膜的制备及表征
作者:吕权1,殷海燕1,虞文魁2,黄鑫1,李磊1
单位: 1、南京大学 化学化工学院, 江苏 南京  210093,2、南京大学 医学院,江苏 南京  210093
关键词: 聚砜膜式氧合器;渗透通量;临界透水压力;传输效率
DOI号:
分类号: TB324
出版年,卷(期):页码: 2013,33(5):25-29

摘要:
通过浸没沉淀相转换法制备了膜式氧合器的聚砜不对称膜,并对其性能进行表征。制膜实验结果表明,随着铸膜液浓度的增加,氧气和二氧化碳渗透通量减小,临界透水压力增大,而湿膜的预挥发时间越长,膜的通量越小,但是临界透水压力变化不大,因此优化的铸膜液浓度为15%和预挥发时间为5s。此外针对膜式氧合器的气液传输测试结果表明,当牛血流速为5L/min时,氧气和二氧化碳通过膜的传输速率分别达到163ml/min和148ml/min,可以满足膜式氧合器气体交换传输能力的要求。
Membrane oxygenator-oriented polysulfone(PSF) asymmetric membranes were prepared by wet phase inversion method and their performance was characterized primarily. It was demonstrated through experiments of membranes preparation that with increasing PSF concentration of casting solution, permeation flux of O2 and CO2 decreased and critical water permeability pressure of membrane(CWPPM) increased. Moreover, prolonging pre-volatilization time of wet membranes had a disadvantage on gas permeation but had little effect on CWPPM. Accordingly, the optimal PSF concentration of casting solution and pre-volatilization time of wet membranes is 15% and 5s, respectively. Besides, application experimental results of gas-liquid transport through PSF membrane oxygenator indicated that when the flow rate of bovine blood reached 1.5L/min, permeation flux of O2 and CO2 were 163ml/min and 148ml/min, respectively, which could achieve the gas exchange transmission capacity of membrane oxygenator.

基金项目:
江苏省自然科学基金面上项目(BK2012727)

作者简介:
吕权(1987—),男,河南省信阳市人,硕士研究生,研究方向为人工肺用膜材料;李磊,男,副教授,通讯联系人,电话: ( 025 ) 83596665- 810, E-mail:ll-nju@163.com.

参考文献:
[1]M.W.Lim.The history of extracorporeal oxygenator [J] . Anaesthesia, 2006, 61, 984–995
[2] Brittany A Zwischenberger, Lindsey A Clemson and Joseph B Zwischenberger. Artificial lung: progress and prototypes[J]. Expert Rev. Med. Devices2006, 3(4): 485-498.
[3] Eisuke Tatsumi. Arti?cial lungs: current state and trends of clinical use and research and development [J]. J Artif Organs , 2007,10:1–5.
[4]Frank wiese. Membrane for artificial lung[M]. Membrane for the life sciences: 49-68.
[5]Don N. Gray. Polymeric membrane for artificial lung [M]. American chemical society: Washington DC,1984, 150-161.
[6] Hiroyoshi Kawakami. Polymeric membrane materials for artificial organs[J].Artif Orgasns (2008) 11:177-182
[7]Tadashi Motomura, Tomohiro Maeda. Development of silicone rubber hollow fiber membrane oxygenator for ECMO. Artificial Organs 27(11):1050–1056
[8] Mário DRUMMOND, Domingo M.BRAILE Technological evolution of membrane oxygenators[J] Braz J Cardiovasc Surg 2005; 20(4): 432-437.
[9] 杨瑜静,谷雪莲,徐秀林等. 复用血液透析器(人工肾)膜表面粘附蛋白的实验研究[J].膜科学与技术.2008,28(6):79-83.
[10] Dongliang Wang, W.K. Teo, K.Li. Preparation and characterization of high-?ux polysulfone hollow ?bre gas separation membranes[J]. Journal of Membrane Science , 2002, 204,247–256.
[11] Robles NR, Murga L, Galvan S, Esparrago JF,
Sanchez-Casado E. Hemodialysis with cuprophane or polysulfone: effects on uremic polyneuropathy [J]. American Jouranal of disease, 1993, 21(3):282-287.
[12] Fawen Wu, Lei Li, Zhihong Xu. Transport study of pure and mixed gases through PDMS membrane[J]. Chemical Engineering Journal 2006,11,751–59.
[13] P.S.T. Machado, A.C. Habert, C.P. Borges. Membrane formation mechanism based on precipitation kinetics and membrane morphology [J]. Journal of Membrane Science 1999, 155, 171-183.
[14] Motohiro Niwa, Hiroyoshi Kawakami, Shoji Nagaoka. Development of a Novel Polyimide Hollow-?ber Oxygenator[J]. Arti?cial Organs 28(5): 487–495
[15] William J. Federspiel Kristie A. Henchir. Lung, Artificial: Basic Principles and Current Applications    [M].University of Pittsbrugh, Pennsylvania, U.S.A, 909-921
[16] C Visser and DS de Jong. Clinical evaluation of six hollow-fibre membrane oxygenators. University Hospital Maastricht, perfusion, 1997, 12,357-368.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号