乙二胺、乙二胺四乙酸有机盐作为FO过程驱动溶质的研究 |
作者:王皓1,2,李雪梅2, 何涛2, 王周为2, 赵宝龙2, 宋健峰2, 殷勇2, 曾楚怡2,林晓1 |
单位: 1.材料化学工程国家重点实验室,南京工业大学化学与化工学院,江苏 南京210009; |
关键词: 乙二胺;乙二胺四乙酸;正渗透;驱动液 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2013,33(6):87-91 |
摘要: |
正渗透技术以其低能耗高效率等特点在分离领域有广泛的应用前景,而驱动液的缓慢发展限制了该技术的进一步应用。传统的无机盐驱动溶质如NaCl等在正渗透过程中会产生严重的浓差极化现象和驱动溶质流失,导致驱动效率下降和溶质损失。针对上述问题本文以氯化钠为参考,考察了乙二胺及乙二胺四乙酸有机盐作为正渗透驱动溶质对水通量和盐损失的影响。以商业HTI正渗透膜为评价介质,驱动溶质为0.5 mol/L时,EDTA盐,EDA和NaCl盐的水通量分别为14.5和12.8,和12.5 L•m -2•h-1,它们对应的特性溶质逆向扩散值(JS/JW)分别为0.3g/L,1.1g/L和1.0g/L。结果表明EDTA盐作为正渗透驱动溶质时可提高正渗透过程的水通量并可显著的降低驱动溶质流失,说明该类物质有作为正渗透驱动溶质的发展前景。 |
Forward osmosis uses the osmotic pressure difference across a semipermeable membrane as the driving force for the concentration and desalination of the feed solution. Although the development of FO processes has drawn a lot of attention for its energy-efficiency and high water recovery rate, the FO flux is far below theoretical prediction because of internal concentration polarization and high salt leakage in the FO process. In this report, organic chemicals, ethylenediamine (EDA) and ethylenediaminotetraacetate (EDTA), are used as the draw solutes for forward osmosis and compared with NaCl. The osmotic pressure, FO flux with different membrane orientation, and reverse solute flux were measured using commercial HTI membranes. It was found that in the AL-DS mode, at draw solution concentration of 0.5 mol/L, FO water fluxes were 14.5, 12.8, and 12.5 L•m2•h-1, specific reverse solute flow rate (Js/Jw) were 0.3, 1.1, 1.0 g/L for EDTA , EDA, and NaCl, respectively. The reasons behind the very low reverse solute flow of EDTA were analyzed and ascribed to its larger hydration diameter and possibly negative net charges. These results showed that the organic draw solutes are promising as draw solutes for forward osmosis. |
基金项目: |
国家重大基础研究973项目 (No. 2012CB623402 2012CB720903), 自然科学基金项目(21176119) |
作者简介: |
王皓(1987-),男,甘肃武威人,硕士,南京工业大学,主要研究方向为正渗透驱动溶质;通讯联系人:email: linx@njut.edu.cn ; het@sari.ac.cn |
参考文献: |
[1]Cath T Y, Childress A E, Elimelech MOL/L. Forward osmosis: Principles, applications, and recent developments[J]. J Membr Sci, 2006, 281: 70-87. [2]Petrotos K B, Quantick P C, Petropakis H. Direct osmotic concentration of tomato juice in tubular membrane – module configuration. II. The effect of using clarified tomato juice on the process performance[J]. J Membr Sci, (1999), 160: 171-177. [3]McGinnis R L, Elimelech MOL/L. Global Challenges in Energy and Water Supply: The Promise of Engineered Osmosis[J]. Environmental Science & Technology, 2008 , 42(23) : 8625-8629. [4]李 刚, 李雪梅, 何涛. 正渗透技术及其应用[J]. 化工进展,2009(2):16-20. [5]李 刚, 李雪梅, 柳越, 等. 正渗透原理及浓差极化现象[J]. 化学进展. 2010 , 22(5) : 812-821. [6]Frank B S. Desalination of sea water[P]. US Patent 3,670,897. 1972. [7]Phuntsho S, Shon H K, Hong S, et al. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions[J]. J Membr Sci,, 2011, 375(1–2): 172-181. [8] McCutcheon J R, McGinnis R L, Elimelech MOL/L. A novel ammonia–carbon dioxide forward (direct) osmosis desalination process[J]. Desalination, 2005, 174(1):1–11. [9] Phillip W A, Yong J S, Elimelech. Reverse Draw Solute Permeation in Forward Osmosis: Modeling and Experiments[J]. Environmental Science & Technology, 2010, 44(13): 51705176. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号