钛基电催化膜电化学合成制备丙酸及膜反应器优化设计 |
作者:李娇,王虹,李建新?,管崎崎,杨阳 |
单位: 天津工业大学材料科学与工程学院,中空纤维膜材料与膜过程省部共建 |
关键词: 有机电化学合成;MnO2/Ti电催化膜反应器;正丙醇;丙酸 |
DOI号: |
分类号: TQ035 |
出版年,卷(期):页码: 2013,33(6):64-70 |
摘要: |
以负载纳米MnO2的导电微孔钛膜为阳极,不锈钢为阴极,构建电催化膜反应器用于正丙醇电化学合成丙酸。考察了电催化膜反应器操作电压、电流密度、反应温度、溶液pH值及停留时间对正丙醇转化率和丙酸选择性的影响,采用响应面法对操作电压、反应温度、溶液pH值及停留时间四个参数进行优化。结果显示,电催化氧化正丙醇制备丙酸的最优条件为操作电压为2.87V、溶液pH值为4.82、停留时间为22.55min、反应温度为52.63℃。电催化膜反应器运行75min时,正丙醇转化率为99.82%,丙酸选择性为79.91%。 |
An electrocatalyitic membrane as the anode and a stainless steel tube surrounding the membrane as the cathode were connected by a DC regulated power supply to constitute an ECMR, which was employed to produce propionic acid from n-propanol. The effect of operating parameters such as operating voltage (A), pH value of the solution (B), residence time (C) and reaction temperature (D) in the ECMR on n-propanol conversion and propionic acid selectivity were investigated through the response surface method. Results showed the optimum conditions obtained were operating voltage (A) of 2.87 V, pH value of the solution (B) of 4.82, residence time (C) of 22.55 min and the reaction temperature (D) of 52.63 ?C. It was found that the n-propanol conversion and propionic acid selectivity obtained under the optimum conditions were 99.82% and 79.91% after 75 min of reaction time, respectively. |
基金项目: |
国家自然科学基金(21076156; 21206119);教育部高等学校博士学科点专项科研基金(20101201110002) |
作者简介: |
李娇(1987-),女,湖北咸宁人,硕士研究生,主要从事电催化膜方面的研究。*通讯人waho7808@163.com; jxli0288@yahoo.com.cn |
参考文献: |
[1]Zhang A. Yang S T. Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation [J]. Biotechnology and Bioengineering, 2009. 104(4): 766-773. [2]Kiss G. Palladium-Catalyzed Reppe Carbonylation [J]. Chemical Reviews, 2001. 101(11): 3435-3456. [3]Samel U-R, Kohler W, Gamer A O, et al. Propionic Acid and Derivatives in Ullmann's Encyclopedia of Industrial Chemistry [M]. VCH Publisher Inc, 1993. [4]Ruhal R, Aggarwal S, Choudhury B. Suitability of crude glycerol obtained from biodiesel waste for the production of trehalose and propionic acid [J]. Green Chemistry, 2011. 13(12): 3492-3498. [5]Papa A J. Propanal in Ullmann's Encyclopedia of Industrial Chemistry [M]. Wiley-VCH Verlag GmbH, 2000. [6]Yoshida J, Kataoka K, Horcajada R, et al. Modern strategies in electroorganic synthesis [J]. Chemical Reviews, 2008. 108(7): 2265-2299. [7]Bianchini C, Bambagioni V, Filipp J, et al. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells [J]. Electrochemistry Communications, 2009. 11(5): 1077-1080. [8]Yang Y, Li J X, Wang H, et al. An Electrocatalytic Membrane Reactor with Self-Cleaning Function for Industrial Wastewater Treatment [J]. Angewandte Chemie International Edition, 2011. 50(9): 2148-2150. [9]Yang Y, Wang H, Li J X, et al. Novel Functionalized Nano-TiO2 Loading Electrocatalytic Membrane for Oily Wastewater Treatment [J]. Environmental Science & Technology, 2012. 46(12): 6815-6821. [10]Kennepohl D, Sanford E. Conversion of Athabasca Bitumen with Dispersed and Supported Mo-Based Catalysts as a Function of Dispersed Catalyst Concentration [J]. Energy & Fuels, 1996. 10(1): 229-234. [11]Furukawa S, Shishido T, Teramura K, et al. Photocatalytic Oxidation of Alcohols over TiO2 Covered with Nb2O5 [J]. ACS Catalysis, 2011. 2(1): 175-179. [12]Yoshida J, Kim H. Nagaki A. Green and sustainable chemical synthesis using flow microreactors [J]. ChemSusChem, 2011. 4(3): 331-340. [13]Yuan G Q, Jiang H F, Lin C, et al. Efficient electrochemical synthesis of 2-arylsuccinic acids from CO2 and aryl-substituted alkenes with nickel as the cathode [J]. Electrochimica Acta, 2008. 53(5): 2170-2176. [14]Li, J. Preparation of nano-MnO2 loading electrocatalytic membrane and membrane reactor for the production of propionic acid from n-propanol. Master Dissertation. Tianjin Polytechnic University, Tianjin, China, 2013. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号