气升循环分体式MBR中H循环管水力学研究 |
作者:张晴,樊耀波,徐荣乐 |
单位: 中国科学院生态环境研究中心,北京 100085 |
关键词: 气升循环分体式膜生物反应器、H循环管、计算流体力学 |
DOI号: |
分类号: X703.1 |
出版年,卷(期):页码: 2014,34(1):39-45 |
摘要: |
本文以气升循环分体式MBR为研究对象,采用计算流体力学数值模拟方法,展开H循环管水力学条件优化研究。对H循环管的作用及H循环管管径大小的影响进行了模拟分析,并推导出H循环管循环流速U的计算公式。结果表明,H循环管对于气升循环分体式MBR具有必要性;膜单元与生物单元之间的循环流量随H循环管管径增大而增大,而当D/L(H循环管管径/膜池回流口长度)=22.2%时,H循环管平均循环流速最大,循环效率较高;推导得出H循环管内流速计算公式为:U=1/n R^(2/3) [(H_0/l)(Q_a1/(v_1 A_1 )-Q_a2/(v_2 A_2 )) ]^(1/2)。本文研究结果可为MBR水力学研究与气升循环分体式MBR研究与应用提供科学依据和参考。 |
In this study, computational fluid dynamics (CFD) was implemented to study the hydrodynamic characteristics of H circulating pipe in airlift external circulation membrane bioreactor (AEC-MBR). The role of H circulating pipe and the effect of different diameters of H circulating pipe on circulation were modeled and analyzed. Furthermore, formula of circulation flow velocity in H circulating pipe was deduced. The results showed that H circulating pipe was necessary and played an important role in the AEC-MBR, and that an increase in the diameter of H circulating pipe led to an increase in the mass flow rate between the membrane unit and the aeration tank. The mean flow velocity in H circulating pipe reached a maximum when D/L=22.2%. An equation was derived for determining the velocity of the circulation flow in the H circulating pipe as U=1/n R^(2/3) [(H_0/l)(Q_a1/(v_1 A_1 )-Q_a2/(v_2 A_2 )) ]^(1/2).The results and research method provide by this paper can be used as a reference for further hydraulic study of MBR. |
基金项目: |
国家自然科学基金“MBR 流场、传质与能耗的相互关系研究”(51278483),环境模拟与污染控制国家重点联合实验室(环境水质学实验室)课题“计算流体力学(CFD)及其在膜生物反应器技术创新中的应用研究”。 |
作者简介: |
张晴(1987—),女,湖南湘潭,硕士生,研究方向为计算流体力学(CFD)在膜生物反应器(MBR)中的应用研究。E-mail: zhangqing210@mails.gucas.ac.cn。*通讯作者,E-mail: ybfan@rcees.ac.cn |
参考文献: |
[1]樊耀波, 杨问波. H或h循环管分置式膜生物反应器. 中国, CN1318320C[P]. 2004-04-21. [2]徐慧芳, 樊耀波. 气升循环分体式膜生物反应器再生回用厕所污水的研究[J]. 环境科学, 2003, 24(02): 125-129. [3]樊耀波, 徐慧芳, 郭海明. 气升循环分体式膜生物反应器污水处理与回用技术[J]. 环境污染治理技术与设备, 2004, 5(7): 70-75. [4]谢龙汉,赵新宇,张炯明. Ansys CFX流体分析及仿真[M]. 北京: 电子工业出版社, 2012. 1-2. [5]于艳, 樊耀波, 徐国良, 等. 计算流体力学在膜技术及膜生物反应器研究中的应用[J]. 膜科学与技术, 2011, 31(01): 105-112. [6]于艳, 樊耀波, 徐国良, 等. 计算流体力学对膜生物反应器水力学特征的模拟研究[J]. 膜科学与技术, 2011, 31(04): 9-16. [7]张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010. 19-34. [8]安德森, 吴颂平, 刘赵淼. 计算流体力学基础及其应用[M]. 机械工业出版社, 2007. [9]Brannock M, Wang Y, Leslie G. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation[J]. Water Research, 2010, 44(10): 3181-3191. [10]Kang C W, Hua J S, Lou J, et al. Bridging the gap between membrane bio-reactor (MBR) pilot and plant studies[J]. Journal of Membrane Science, 2008, 325(2): 861-871. [11]Prieske H, Drews A, Kraume M. Prediction of the circulation velocity in a membrane bioreactor[J]. Desalination, 2008, 231(1-3): 219-226. [12]Khalili-Garakani A, Mehrnia M R, Mostoufi N, et al. Analyze and control fouling in an airlift membrane bioreactor: CFD simulation and experimental studies[J]. Process Biochemistry, 2011, 46(5): 1138-1145. [13]张晴, 樊耀波*, 魏源送, 等. 气升循环分体式MBR的CFD模拟及优化[J]. 膜科学与技术, 2013, 33(4). [14]李刚. 气升循环分体式膜生物反应器相关机理及工艺优化研究[D]: [学位论文]. 北京: 中国科学院研究生院, 2006. 38-75. [15]Naessens W, Maere T, Ratkovich N, et al. Critical review of membrane bioreactor models – Part 2: Hydrodynamic and integrated models[J]. Bioresource Technology, 2012, 122: 107-118. [16]朱红钧. Fluent 12 流体分析及仿真[M]. 北京: 清华大学出版社, 2011. [17]Fluent A. Fluent 12.0 user’s Guide[M]. ANSYS, Inc., 2009. [18]张晴, 樊耀波*, 魏源送, 等. CFD及ASM-CFD在MBR研究中的应用进展[J]. 膜科学与技术, 2013, 33(2). [19]闻德荪. 工程流体力学: 水力学(下册)[M]. 北京: 高等教育出版社, 2004. 57-68. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号