超滤过程中浸没式中空纤维膜组件的数学模拟优化研究
作者:罗南1,樊耀波 ,王捷2,耿全月
单位: 1.中国科学院生态环境研究中心,水污染控制室,北京 100085;2.天津工业大学环境与化学工程学院,天津 300399
关键词: 中空纤维膜组件,响应曲面法,数学模型,膜污染,优化
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2014,34(2):32-39

摘要:
本文基于中空纤维膜轴向不均污染理论,运用响应曲面法建立了浸没式中空纤维超滤膜组件不同通量状态下,膜组件过滤过程中的膜阻力关于时间、空间的动态数学模型,对建立的模型进行了显著性分析及实验验证,并对中空纤维膜组件进行了数学优化。通过验证实验发现,发现实测数据与膜阻力动态数学模型计算值基本一致。通过对数学模型分析发现:在次临界通量状态下,膜丝长度及运行时间均存在最佳值;在临界和超临界状态下,膜阻力及运行时间与膜丝长度成正比。
 
Based on the theory of membrane foulingasymmetric distributionalong axial hollow fiber membrane,the dynamic models of membrane resistance related to time and space under variation flux condition in ultrafiltration of hollow fiber membrane were established by Response Surface Methodology (RSM). Theremarkableanalysis and experiment have been carried out to verify this model.The optimization of the hollow fiber membrane module was performed using the model. The verification suggests thatmodel calculated value agrees with experimental valuewell.Analysis of this model showedthat in the subcritical flux condition, there was an optimum value of membrane fiber length and operation time.In the critical and supercritical state,membrane resistance is proportional to the fiber length and operational time.

基金项目:
水体污染控制与治理科技重大专项“PVDF膜组件及成套装备产业化”(2011ZX07321- 001),国家自然科学基金“MBR 流场、传质与能耗的相互关系研究”(51278483),中国科学院院地合作项目:“新型低能耗膜生物反应器污水资源化技术工程应用”(ZNGZ2011023)

作者简介:
罗南(1987-),女,湖南衡阳人,博士生,从事膜分离技术的研究. *通讯联系人E-mail: ybfan@rcees.ac.cn

参考文献:
[1] Yamamoto K, Hiasa M, Mahmood T, et al. DIRECT SOLID-LIQUID SEPARATION USING HOLLOW FIBER MEMBRANE IN AN ACTIVATED-SLUDGE AERATION TANK[J]. Water Science and Technology. 1989, 21(4-5): 43-54.
[2] Chang S, Waite T D, Schafer A I, et al. Adsorption of the endocrine-active compound estrone on microfiltration hollow fiber membranes[J]. Environmental Science & Technology. 2003, 37(14): 3158-3163.
[3] Ebara M, Hoffman J M, Stayton P S, et al. Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and 'smart' polymers[J]. Radiation Physics and Chemistry. 2007, 76(8-9): 1409-1413.
[4] Polyakov Y S. Hollow-fiber membrane adsorber: Mathematical model[J]. J MembrSci, 2006, 280(1-2): 610-623.
[5] Schoeberl P, Brik M, Bertoni M, et al. Optimization of operational parameters for a submerged membrane bioreactor treating dyehouse wastewater[J]. Separation and Purification Technology. 2005, 44(1): 61-68.
[6] Polyakov Y S. Deadend outside-in hollow fiber membrane filter: Mathematical model[J]. J MembrSci,  2006, 279(1-2): 615-624.
[7] 胡保安,吕晓龙,马世虎.聚偏氟乙烯中空纤维微滤膜的化学清洗研究[J].膜科学与技术,2007,27(1):63-67.
[8] 杨大春,顾平,刘锦霞.膜生物反应器的中空纤维膜组件优化设计[J].中国给水排水,2002,18(4):10-13.
[9] 赵学辉,吕晓龙.中空纤维膜孔径及其分布的测定[J].水处理技术,2007,33(7):14-17.
[10] 郭春禹,曹兵,杜启云等.浸入式中空纤维膜元件的优化设计[J].膜科学与技术,2007,27(3):67-90.
[11] 杜启云.中空纤维膜分离技术在水资源化中的应用[J].天津城市建设学院学报,2003,9(2):77-81.
[12] 贾悦,齐麟,吕晓龙.膜吸收法处理工业废水过程中PVDF膜及组件优化[J].高分子材料科学与工程,2010,26(7):143-146.
[13] Le-Clech P, Chen V, Fane T A G. Fouling in membrane bioreactors used in wastewater treatment[J]. J MembrSci,  2006, 284(1-2): 17-53.
[14] Li T, Law A W, Cetin M, et al. Fouling control of submerged hollow fibre membranes by vibrations[J]. J MembrSci, 2013, 427: 230-239.
[15] Wu B, Kitade T, Chong T H, et al. Flux-Dependent Fouling Phenomena in Membrane Bioreactors under Different Food to Microorganisms (F/M) Ratios[J]. Separation Science and Technology. 2013, 48(6): 840-848.
[16] Mcadam E, Judd S J, Gildemeister R, et al. Critical analysis of submerged membrane sequencing batch reactor operating conditions[J]. Water Research. 2005, 39(16): 4011-4019.
[17] Fane A, Chang S. Membrane bioreactors: Design & operational options[J]. Filtration & Separation. 2002, 39(5): 26-29.
[18] Chang S, Fane A G. Filtration of biomass with axial inter-fibre upward slug flow: performance and mechanisms[J]. J MembrSci, 2000, 180(1): 57-68.
[19] Chang S, Fane A G. Filtration of biomass with laboratory-scale submerged hollow fibre modules - effect of operating conditions and module configuration[J]. Journal of Chemical Technology and Biotechnology. 2002, 77(9): 1030-1038.
[20] Chang S, Fane A G, Vigneswaran S. Modeling and optimizing submerged hollow fiber membrane modules[J]. Aiche Journal. 2002, 48(10): 2203-2212.
[21] 王捷,张宏伟,张燕等.长度及出水方式对中空纤维膜过滤性能的影响[J].膜科学与技术,2010,30(3):30-34.
[22] Yin Yanmei, Wang Jie, Yu Ffengwei, et al. Effects of module configuration on hollow fiberfiltration fouling and permeability[M]. Advanced Research On Material Engineering, Chemistry, Bioinformatics II, 2012: 531, 478-483.
[23] 袁栋栋,樊耀波,徐国良,等. 膜生物反应器中临界通量理论的研究[J]. 膜科学与技术. 2010(02): 97-103.
[24] Kim J, Digiano F A. Defining critical flux in submerged membranes: Influence of length-distributed flux[J]. J MembrSci,  2006, 280(1–2): 752-761.
[25] Muralidhar R V, Chirumamila R R, Marchant R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal. 2001, 9•(1): 17-23.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号