新型PDMAA基准物用于超滤膜截留性能检测的研究
作者:郭春刚1,潘献辉2,李浩1,张建华3,徐旭1,李雪梅1,吕经烈1
单位: 1.国家海洋局天津海水淡化与综合利用研究所,天津 300192;2. 国家海水及苦咸水利用产品质量监督检验中心,天津 300192;3.天津大学材料学院,天津 300072
关键词: 基准物;超滤膜;截留性能;RAFT聚合
DOI号:
分类号: TQ028.8;TQ316.32
出版年,卷(期):页码: 2014,34(2):60-65

摘要:
采用可逆加成-断裂链转移聚合(RAFT聚合)技术,通过合成并使用具有双硫酯结构的化合物N-咔唑二硫代甲酸苄基酯(BCBD)RAFT试剂,以N,N-二甲基丙烯酰胺(DMAA)为单体,合成得到了 =9120,分子量分布窄(PDI<1.1),且链末端带发色团的聚合物PDMAA。PDMAA溶液在为0.1-2000 mg/L的浓度范围内,在波长为370 nm处的吸收强度与其浓度具有良好的线性关系。PDMAA作为基准物表征超滤膜的截留性能的研究结果表明,相对于PEG10000,PDMAA可以准确并且简易地表征超滤膜的截留性能,初步说明PDMAA作为基准物质的可行性,也表明RAFT活性聚合是制备性能优异超滤膜截留性能检测用基准物质的可行途径。
As Benzyl 9H-carbazole-9-carbodithioate(BCBD) was used as the RAFT reagent, Poly(N,N-Dimethyl Acrylamide)(PDMAA) with chromophore was synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) method. The average molecular weight of PDMAA is 9120 ( )with a low polydispersity(PDI<1.1). There is a good linear relationship between absorbance and the concentration of PDMAA when the concentration of PDMAA in the range of 0.1-2000mg/L at a wavelength of 370 nm. When the synthesized PDMAA was used to determining the retention performance of ultrafiltration membrane, the preliminary results showed the method was more simple and easy with a relative high degree of accurancy compare to the commercial PEG. It is also indicated the RAFT Polymerization is feasible way to develop novel standard substance. 

基金项目:
国家海洋局青年海洋科学基金资助项目(2011404)

作者简介:
第一作者简介:郭春刚 (1982- ),男,天津人,硕士,工程师,研究方向为聚合物分离膜材料制备、检测及应用,*通讯作者:郭春刚,电话:022-87898130,E-mail:guoguo19822002@qq.com。

参考文献:
[1]Sanz J M, Peinador R, Calvo J I, et al. Characterization of UF membranes by liquid–liquid displacement porosimetry[J]. Desalination, 2009, 245: 546-553.
[2]潘献辉, 王晓楠, 张艳萍, 等. 超滤膜截留性能检测用基准物质研究与应用进展[J]. 膜科学与技术, 2013, 33(2): 104-108.
[3]Causserand C, Rouaix S, Akbari A, et al. Improvement of a method for the characterization of ultrafiltration membranes by measurements of tracers’ retention[J]. Journal of Membrane Science, 2004, 238: 177–190.
[4]温建志,王立国,王祖民. 对超滤膜截留性能测定方法的探讨[J]. 膜科学与技术, 1995, 15(2): 65-68.
[5]国家海洋标准计量中心. HY/T 050-1999, 中空纤维超滤膜测试方法[S]. 天津: 魏健敏, 张惠新, 戴海平, 等, 1999, 1-4.
[6]吴金克,王彬. 超滤膜截留性能测定方法[J]. 天津化工, 2002, 2: 24-26.
[7]Tam C M, Tremblay A Y. Membrane pore characterization-comparison between single and multicomponent solute probe techniques[J]. Journal of Membrane Science, 1991, 57: 271–287.
[8]孙绪江,王世昌. 蛋白酶溶液超滤过程的截留率和活性损失[J]. 水处理技术,1991,17(5):289-294.
[9]Lee S, Park G, Amy G, et al. Determination of membrane pore size distribution using the fractional retention of nonionic and charged macromolecules[J]. Journal of Membrane Science, 2002, 201: 191–201.
[10]Arkhangelsky E, Duek A, Gitis V. Maximal pore size in UF membranes[J]. Journal of Membrane Science, 2012, 394-395, 89-97.
[11]Causserand C, Pierre G, Rapenne S, et al. Characterization of ultrafiltration membranes by tracer's retention: Comparison of methods sensitivity and reproducibility[J]. Desalination, 2010, 250: 767–772.
[12]Chiefari J, Chong Y K, Ercole F, et al. Living free-radical polymerization by Reversible Addition-Fragmentation Chain Transfer: the RAFT process[J]. Macromolecules, 1998, 31(16): 5559-5562.
[13]Barner L, Davis T P, Stenzel M H, et al. Complex macromolecular architectures by Reversible Addition Fragmentation Chain Transfer chemistry: theory and practice[J]. Macromolecular Rapid Communications, 2007, 28: 539–559.
[14]Moad G, Rizzardo E, Thang S H. Radical addition fragmentation chemistry in polymer synthesis[J]. Polymer, 2008, 49: 1079-1131.
[15]Zhang J H, Dong An J, Cao T Y, et al. Carbazyl RAFT agents synthesized by an improved aqueous phase method and their applications in RAFT polymerization[J]. European Polymer Journal, 2008, 44(4): 1071-1080.
[16]金日光, 华幼卿. 高分子物理[M]. 第二版. 北京: 化学工业出版社, 2000年. 8-20.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号