超滤膜污染以及膜前预处理技术研究进展
作者:
鄢忠森1,瞿芳术1,梁恒13,杜星1,郑文禹2,党敏1,李圭白13
单位: 1.哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨150090;2.中国市政工程东北设计研究总院,长春130021;3.城市水资源开发利用(北方)国家工程研究中心,哈尔滨150090
关键词: 超滤;膜污染;膜前预处理;饮用水安全保障
DOI号:
分类号: TU991.2
出版年,卷(期):页码: 2014,34(4):108-114

摘要:
超滤是一种重要的饮用水安全保障技术,在饮用水处理工业中具有广泛应用的前景。但是膜污染会造成超滤工艺的运行维护成本增加、膜使用寿命缩短,限制超滤工艺的进一步推广应用。本文总结了超滤膜污染和膜前预处理缓解膜污染研究的前沿动态,对主要膜污染物质、膜污染机理以及膜前预处理的膜污染影响机制进行了深入的分析,认为天然水中亲水性大分子有机物是主要的膜污染物质,而混凝、吸附和预氧化等膜前预处理都无法消除亲水性大分子有机物引起的膜污染。引起滤饼层污染、膜孔堵塞污染和膜孔内吸附污染等膜污染形式的力学因素研究将是膜污染机制研究的重要方向;开展膜前预处理技术和组合研究,强化亲水性大分子有机物膜污染的缓解是膜前预处理研究的发展趋势。 
 Ultrafiltration, which is an important water treatment technology, has broad application prospects in the drinking water treatment industry. However, the membrane fouling would enlarge the operation cost and shorten membrane life span, limiting its further application. This paper summarized the recent progress in the studies on the ultrafiltration membrane fouling including main foulant identification, fouling mechanism and various pretreatment technologies. It was widely considered that the hydrophilic macromolecular organic in natural water was the major membrane pollutants, and that the pretreatment technologies such as coagulation, adsorption and membrane pre-oxidation pretreatment were unable to eliminate the membrane fouling caused by hydrophilic organic macromolecules. In addition, the internal mechanism leading to the pore blocking, pore construction and cake layer fouling were limitedly known, requiring further studies. Overall, it is of great significance to develop the hybrid process for drinking water treatment, putting an emphasis on the fouling by the hydrophilic and macromolecular organic matter.

基金项目:
国家科技重大专项“水体污染控制与治理”资助项目(2008ZX07422-005);国家自然科学基金资助项目(51138008);中央高校基本科研业务费专项基金资助(NSRIF. 2014096);城市水资源与水环境国家重点实验室自主课题(HIT. 2012DX07)。

作者简介:
鄢忠森(1990年9月),男,福建-永泰人,博士研究生,主要研究方向,talent3712@126.com;

参考文献:
[1] Li L., Gao N.Y., Deng Y., Yao J.J., Zhang K.J. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. [J]. Water Res., 2012, 46 (4): 1233~1240.
[2] Dixon M.B., Richard Y., Ho L., Chow C.W.K., O’Neill B.K., Newcombe G. A coagulation-powdered activated carbon-ultrafiltration-Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms. [J]. J. Hazard. Mater., 2011, 186 (2-3): 1553~1559. 
[3] Huang H.O., Young T.A., Schwab K.J., Jacangelo J.G. Mechanisms of virus removal from secondary wastewater effluent by low pressure membrane filtration. [J]. J. Membr. Sci., 2012, (409-410): 1~8.
[4] Tian J.Y., Ernst M., Cui F.Y., Jekel M. Correlations of relevant membrane foulants with UF membrane fouling in different waters. [J]. Water Res., 2013, 47(3): 1218~1228.
[5] Lahoussine-Turdaud V. Fouling in tangential-flow ultrafiltration: the effect of colloid size and coagulation pretreatment. [J]. J. Membr. Sci., 1990, 52(2): 173~-190.
[6] Fan L.H., Nguyen T., Roddick F.A., Harris J.L. Low-pressure membrane filtration of secondary effluent in water reuse: pre-treatment for fouling reduction. [J]. J. Membr. Sci., 2008, 320(1-2): 135~142.
[7] Jermann D., Pronk W., Kagi R., Halbeisen M., Boller M. Influence of interactions between NOM and particles on UF fouling mechanisms. [J]. Water Res., 2008, 42(14): 3870~3878.
[8] Kim H.C., Dempsey B.A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. [J]. J. Membr. Sci., 2013, 428: 190~197.
[9] Tian J.Y., Ernst M., Cui F.Y., Jekel M. Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions. [J]. J. Membr. Sci., 2013, 446: 1~9.
[10] Yuan W., Zydney A.L. Humic acid fouling during ultrafiltration. [J]. Environ. Sci. Technol., 2000, 34(23): 5043~5050.
[11] Lin C., Lin T., Hao O.J. Effects of humic substance characteristics on UF performance. [J]. Water Res., 2000, 34(4): 1097~1106.
[12] Amy G. Fundamental understanding of organic matter fouling of membranes. [J]. Desalination, 2008, 231(1-3): 44~51.
[13] Cho J., Amy G., Pellegrino J. Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration membrane. [J]. J. Membr. Sci., 2000, 164(1-2): 89~110.
[14] Kimura K., Maeda T., Yamamura H., Watanabe Y. Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water [J]. J. Membr. Sci., 2008, 320(1-2): 356-362.
[15] Qu F.S., Liang H., Tian J.Y., Yu H.R., Chen Z.L., Li G.B. Ultrafiltration (UF) membrane fouling caused by cyanobacteria: Fouling effects of cells and extracellular organics matter (EOM). [J]. Desalination, 2012, 293: 30-37.
[16] Li T., Dong B.Z., Chu W.H. Characteristic of algogenic organic matter and its effect on UF membrane fouling. [J]. Water Sci. & Technol., 2011, 64(8): 1685~1691.
[17] Chiou Y.T., Hsieh M.L., Yeh H.H. Effect of algal extracellular polymer substances on UF membrane fouling. [J]. Desalination, 2010, 250(2): 648~652.
[18] Lee N., Amy G., Croue J.P., Buisson H. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). [J]. Water Res., 2004, 38(20): 4511~4523. 
[19] Shen Y.X., Zhao W.T., Xiao K., Huang X. A systematic insight into fouling propensity of soluble microbial products in membrane bioreactors based on hydrophobic interaction and size exclusion. [J]. J. Membr. Sci., 2010, 346: 187~193.
[20] Stoller M. On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction. [J]. Desalination, 2009, 240(20): 209~217.
[21] Zhang L.L., Gu P., Zhong Z.J., Yang D., He W.J., Han H.D.. Characterization of organic matter and disinfection by-products in membrane backwash water from drinking water treatment. [J].J. Hazard. Mater. , 2009, 168(2-3): 753~759.
[22] Sun X.H., Kanani D.M., Ghosh R. Characterization and theoretical analysis of protein fouling of cellulose acetate membrane during constant flux dead-end microfiltration. [J]. J. Membr. Sci. 2008, 320 (1-2): 372-380.
[23] Qu F.S., Liang H., Zhou J., Nan J., Shao S.L., Zhang J.Q., Li G.B. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. [J]. J. Membr. Sci., 2014, 449: 58~66
[24] Ho C.C., Zydney, A.L. A combined pore blockage and cake filtration model for protein fouling during micro?ltration. [J]. J. Colloid Interface Sci. 2000, 232(2): 389~399.
[25] Mondal S., De S. A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation. [J]. Sep. Purif. Technol. 2010, 75(2): 222~228.
[26] Citulski J., Farahbakhsh K., Kent F., Zhou H.D. The impact of in-line coagulant addition on fouling potential of secondary effluent at a pilot-scale immersed ultrafiltration plant. [J]. J. Membr. Sci. 2008, 325(1): 311~318.
[27] Zhao B.Q., Wang D.S., Li T., Chou W.K. Chow, Huang C.. Influence of floc structure on coagulation-microfiltration performance: Effect of Al speciation characteristics of PACls. [J]. Sep. Purif. Technol., 2010, 72(1): 22~27.
[28] Yu W.Z., Graham N., Liu H.J., Li H., Qu J.H. Membrane fouling by Fe-Humic cake layers in nano-scale: Effect of in-situ formed Fe(III) coagulant. [J]. J. Membr. Sci. 2013, 431: 47~54.
[29] Chon K., Cho J., Shon H.K. A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: Removal of nutrients and micropollutants, and characterization of membrane foulants. [J]. Bioresource Technology, 2013, 141: 109~116
[30] Hankins N., Price R., DebacherN.A.. Process intensification during treatment of NOM-laden raw upland waters: control and impact of the precoagulation regime during ultrafiltration. [J]. Desalination and water treatment, 2009, 8(1-3): 2~16.
[31] Kwang-Ho Choo, Choi S.J., Hwang E.D.. Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system. [J]. Desalination, 2007, 202(1-3): 262~270.
[32] Liang H., Gong W.J., Li G.B.. Performance evaltuation of water treatment ultrafiltration pilot plants treating algae-rich reservoir water. [J]. Desalination. 2008, 221: 345~350.
[33] Chen Y., Dong B.Z., Gao N.Y., Fan J.C.. Effect of coagulation pretreatment on foulig of an ultrafiltration membrane. [J]. Desalination, 2007, 204(1-3): 181~188.
[34] Snyder S.A., Adham S., Redding A.M., Cannon F., Carolis J.D., Oppenheimer J., Wert E.C., Yoon Y.. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. [J]. Desalination, 2007, 202(1-3): 156~181.
[35] Goren U., Aharoni A., Kummel M., Messalem R., Mukmenev I., Brenner A., GitisV.. Role of membrane pore size in tertiary flocculation/adsorption /ultrationfiltration treatment of municipal wastewater. [J]. Sep. Purif. Technol., 2008, 61(2): 193~203.
[36] Jegatheesan V., Senaratne N., Steicke C., Kim S.H.. Powdered activated carbon for fouling reduction of a membrane in a pliot-scale recirculation aquaculture system. [J]. Desalination and Water Treatment, 2009, 3(1-3): 1~5.
[37] Tian J.Y., Liang H., Yang Y.L., Tian S., Li G.B.. Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: as compared to membrane bioreactor (MBR) . [J]. J. Membr. Sci., 2008, 325(1): 262~270.
[38] Tomaszewska M., MoziaS.. Removal of organic matter from water by PAC-UF system. [J]. Water Res., 2002, 36(16): 4137~4143.
[39] Zhao Y., Gu P. Effect of powdered activated carbon dosage on retarding membrane fouling in MBR. [J]. Sep. Purif. Technol., 2006, 52(1): 154~160.
[40] Tsujimoto W., Kimura H., Izu T., IrieT.. Membrane filtration and pretreatment by GAC. [J]. Desalination, 1998, 119(1-3): 323~326. 
[41] Lin C.F., Liu S.H., HaoO.J.. Effect of functional groups of humic substances on UF performance. [J]. Water Res., 2001, 35(10): 2395~2402.
[42] Li C.W., Chen Y.S.. Fouling of UF membrane by humic substance : Effects of molecular weight and powder-activated carbon (PAC) pretreatment. [J]. Desalination, 2004, 170(1): 59~67.
[43] Fabris R., Lee E.K., Chow C.W.K., Chen V., Drikas M.. Pretreatments to reduce fouling of low pressure microfiltration (MF) membranes. [J]. J. Membr. Sci., 2007, 289(1-2): 231~240.
[44] Kang S.T., Subramani A., Hoek E.M., Ceshusses M.A., Matsumoto M.R.. Direct observation of biofouling in cross-flow microfiltration: mechanisms of deposition and release. [J]. J. Membr. Sci., 2004, 244(1-2): 151~165.
[45] Zhang M.M., Li C., Benjamin M.M., Chang Y.J.. Fouling and natural organic matter removal in adsorbent/membrane system for drinking water. [J]. Environ. Sci. Technol, 2003, 37(8): 1663~1669.
[46] Chang Y.J. Benjamin M.M.. Iron oxide adsorption and UF to remove NOM and control fouling. [J]. Journal American Water Works Association, 1996, 88(12): 74-88.
[47] Schlichter B., Mavrov V., Chmiel H.. Study of a hydbrid process combining ozonation and membrane filtration – filtration of model solutions. [J]. Desalination, 2003, 156(1-3): 257~265.
[48] Lehman S.G., Liu L.. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent. [J]. Water Res., 2009, 43(7): 2020~2028.
[49] Karnik B.S., Davies S.H.R., Chen K.C., Jaglowski D.R., Baumann M.J., Masten S.J. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. [J]. Water Res., 2005, 39(4): 728~734.
[50] Hyung H. Lee S., Yoon J., Lee CH.. Effect of preozonation on flux and water quality in ozonation-ultrafiltration hybrid system for water treatment. [J]. Ozone-science & engineering, 2000, 22(6): 637~652.
[51] Kim J., Davies S.H.R., Baumann M.J., Tarabara V.V., MastenS.J.. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation-ceramic ultrafiltration system treating natural waters. [J]. J. Membr. Sci., 2008, 311(1-2): 165~172.
[52] Hung M.T., Liu J.C.. Microfiltration for separation of green algae form water. [J]. Colloids and surface B, 2006, 51(2): 157~164.
[53] Zhu H.T., Wen X.H., Huang X., Noguchi M., Gan Y.P.. Membrane fouling in the reclamation of secondary effluent with an ozone-membrane hybrid system. [J]. Sep. Sci. Technol., 2009, 44(1): 121~130.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号