纯水体系下纳滤膜分离过程热力学问题研究
作者:阳 红 ,叶春松2,张会琴3,王建华1,徐 伟1 刘海鑫1 余敦耀1 杨军1
单位: 1. 中船重工环境工程有限公司 武汉 430064;2. 武汉大学动力与机械学院 武汉 430072;3. 湖北工业大学武汉 430068
关键词: 纳滤膜;热力学;纯水体系
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2014,34(5):79-83

摘要:
本文采用NF270和GE DK纳滤膜,在不同压力、温度和pH条件进行纯水过滤试验,以测定不同条件下两种纳滤膜的膜通量,并研究不同条件下的纳滤膜渗透系数变化规律;构建纳滤膜渗透系数与热力学参数之间的关系式,计算两种纳滤膜的热力学参数,分析两种纳滤膜分离过程热力学原理。结果表明:两种纳滤膜的膜通量随着温度和压力的增加而增大,两种纳滤膜的渗透系数随着温度升高而增大,并随着压力和pH的变化呈现小幅波动;GE DK纳滤膜的活化能高于NF 270纳滤膜的活化能,分别为14.22KJ/mol和16.56KJ/mol。由此可知,在分离过程中GE DK纳滤膜比NF 270纳滤膜需更高的运行压力。
 The two nanofiltration (NF) membranes, NF 270 and GE DK, were tested for the filtration processin pure water system at different temperatures, operating pressures and pH for water. The fluxes of two NF membranes were determined, and the variations of pure water permeability coefficient of NF membranes were discussed. The relationship between pure water permeability coefficient of NF membranes and thermodynamic parameters were conducted and the thermodynamic parameters of two types of NF membranes were calculated. Following that, the principle of the filtration process of NF membrane was discussed. The experimental results show that the fluxes of two NF membranes increased with increasing the temperature and operating pressure. The pure water permeability coefficient of both NF membranes also increased with increasing the temperature and fluctuated within a narrow range regardless of operating pressure and pH for water. The activation energy of GE DK  membrane is higher than that of NF 270membrane, 16.56KJ/mol and 14.22 KJ/mol, respectively, indicating that GE DK membrane requires more energy to run than NF 270 membrane.

基金项目:
国家创新基金项目

作者简介:
阳红(1980-),男,湖北武汉人,博士,中船重工环境工程有限公司,工程师,水处理及污泥资源家技术,

参考文献:
[1] Ventresque C., Gisclon V., Bablon G., et al, An outstanding feat of modem technology: the Méry-sur-Oise nanofiltration treatment plant (340,000m3/d) [J], Desalination, 131 (2000): l-16.
[2] 牟旭凤, 白庆中, 陈红盛, 等, 聚合物辅助超滤/纳滤技术处理模拟放射性废水[J], 给水与排水, 2006, 32: 174-177.
[3] 李晓明, 王铎, 柴涛, 等, 纳滤海水软化的实验研究[J], 高校化学工程学报, 2009, 23(4): 582-586.
[4] 王晓琳, 丁宁. 反渗透和纳滤技术与应用[M], 第一版, 北京:化学工业出版社, 化学工业出版社工业装备与信息工程出版中心出版发行, 2005, 28~29.
[5] Saitua H., Gil R., Perez Padilla A., Experimental investigation on arsenic removal with a nanofiltration pilot plant fromnaturally contaminated groundwater [J], Desalination, 274 (2011):1-6.
[6] Van der Bruggen B., Hawrijk I., Cornelissen E., et al, Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes[J], Separation and Purification Technology, 31(2003):193-200.
[7] Tsuru, T., Izumi, S., Yoshiaoka, T. and Asaeda, M., Temperature effect on transport performances by inorganic nanofiltration membranes[J], AIChE Journal, 46 (2000): 565-574.
[8] Zwolinski, B.J., Eyring, H., and Resse, C.E., Diffusion and membrane permeability, I[J], Journal of physical chemistry, 1949. 53: 1426-1453.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号