纳滤膜深度处理维C制药废水的响应面法优化 |
作者:张婷婷1,许 柯1,任洪强1,丁丽丽1,耿金菊1,陶应扬2 |
单位: 1.南京大学环境学院,污染控制与资源化研究国家重点实验室, 江苏 南京 210046;2.安徽皖维集团,安徽 巢湖市 238000 |
关键词: 纳滤膜; 维生素C废水; 多目标响应面优化 |
DOI号: |
分类号: X5 |
出版年,卷(期):页码: 2014,34(5):89-95 |
摘要: |
维生素C(维C)废水排放量大、有机物浓度高、盐度高,采用纳滤膜对其进行深度处理可提高水资源回用率.本研究选用型号为NFW的纳滤膜,膜进水COD、TOC和电导率的平均浓度为160mg/L、18.21mg/L和18.62ms/cm,COD和TOC去除率为93.75%和95.67%,脱盐率为38.01%.本研究采用响应面法,分析了膜运行主要操作条件(操作压力,P;温度,T;进水流量,Q)与膜污染评价指标(膜通量和污染指数)的关联性并建立了拟合方程,在此基础上获得了最优操作条件.结果表明:关于膜通量和污染指数的二次拟合方程,决定系数(R2)分别是97.53%和90.04%,拟合结果良好.该拟合方程获得的纳滤膜处理维C废水的最优操作条件为:压力P=966kPa,温度T=24℃,进水流量Q=456L/h.实验验证结果表明,上述最优操作条件结果可靠, |
Vitamin C wastewater with high concentrations of organic matter and salinity emissions a great quantity, so it is of great significance to reuse it. The average concentration of COD, TOC and conductivity is 160mg/L, 18.21mg/L and 18.62ms/cm. The removal of COD, TOC and desalination is 93.75%, 95.67% and 38.01%. The quality of the permeate water has reached the reclaimed water quality. By means of the Box-Behnken response surface methodology experiment, influence significance and interactions of three factors (operating pressure, P; feed temperature, T; feed flow rate, Q) were study, and regression models were established to control membrane fouling in vitamin C wastewater reclamation. The optimum conditions of NFW membrane were pressure of 966kPa, T of 24℃ and feed flow rate of 456L/h. The experiment results show that the optimum fits the real results. |
基金项目: |
国家自然科学基金青年基金项目(No.51108230);国家863计划课题(No.2009AA063901). |
作者简介: |
张婷婷(1989-),女,南京大学环境学院硕士研究生,主要从事废水膜处理技术膜污染研究. E-mail:zttssmile@163.com. |
参考文献: |
[1] 戴伟国. 中国维生素C生产现状、动态及对策[J]. 上海医药, 2003, 24(10): 460-461. [2] 2010-2015年中国维生素行业投资分析及前景预测报告[R]. 北京:北京正点国际投资咨询有限公司, 2007. [3] GB/21903-2008发酵类制药工业水污染物排放标准[S]. [4] Wei X Y,Wang Z,Fan F H,et al. Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: Membrane foulant identification and cleaning[J]. Desalination,2010,251(1-3):167-175. [5] Zhu A, Zhu W P, Wu Z,et al.Recovery of clindamycin from fermentation wastewater with nanofiltration membranes[J]. Water Research,2003,37(15):3718-3732. [6] Hanrahan G,Lu K. Application of Factorial and Response Surface Methodology in Modern Experimental Design and Optimization[J]. Critical Reviews in Analytical Chemistry,2006,36(3-4):141-151. [7] Lin S H,Hung C L,Juang R S. Effect of operating parameters on the separation of proteins in aqueous solutions by dead-end ultrafiltration[J]. Desalination,2008,234(1-3):116-125. [8] Ruby Figueroa R A, Cassano A, Drioli E. Ultrafiltration of orange press liquor: Optimization for permeate flux and fouling index by response surface methodology[J]. Separation and Purification Technology,2011,80(1):1-10. [9] Martí-Calatayud M C, Vincent-Vela M C, Álvarez-Blanco S,et al. Analysis and optimization of the influence of operating conditions in the ultrafiltration of macromolecules using a response surface methodological approach[J]. Chemical Engineering Journal,2010,156(2):337-346. [10] Zhang Q X,Yuan Q P. Modeling of Nanofiltration Process for Solvent Recovery from Aqueous Ethanol Solution of Soybean Isoflavones[J]. Separation Science and Technology,2009,44(13):3239-3257. [11] Santafé-Moros A,Gozálvez-Zafrilla J M,Lora-García J,et al.Mixture design applied to describe the influence of ionic composition on the removal of nitrate ions using nanofiltration[J]. Desalination,2005,185(1-3):289-296. [12] Khayet M,Cojocaru C,Essalhi M.Artificial neural network modeling and response surface methodology of desalination by reverse osmosis[J]. Journal of Membrane Science,2011,368(1-2):202-214. [13] 王钊,胡小兵,许柯,等.电解氧化-AF-MBBR处理维生素C生产废水[J]. 中国环境科学,2011,31(11):1795-1801. [14] Mänttäri M,Nyström M. Membrane filtration for tertiary treatment of biologically treated effluents from the pulp and paper industry[J]. Water Science and Technology,2007,55:99-107. [15] 魏复盛,齐文启.水和废水监测方法(第四版)[M]. 中国环境科学出版社,2002. [16] Widjaya A, Hoang T,Stevens GW,et al.A comparison of commercial reverse osmosis membrane characteristics and performance under alginate fouling conditions[J]. Separation and Purification Technology,2012,89:270-281. [17] Kanani D M,Ghosh R.A constant flux based mathematical model for predicting permeate flux decline in constant pressure protein ultrafiltration[J]. Journal of Membrane Science,2007,290(1-2):107-215. [18] Hong S,Faibish R S ,Elimelech M, Kinetics of permeate flux decline in crossflow membrane filtration of colloidal suspensions[J]. Journal of Colloid and Interface Science ,1997, 196:7–277. [19] Song L.Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling[J]. Journal of Membrane Science,1998,139:183-200. [20] Porter M C,Handbook of Industrial Membrane Technology, first ed[M]. Noyes Publications, New Jersey, 1990. [21] Bacchin P, Aimar P, Field R. Critical and sustainable fluxes: Theory, experiments and applications[J]. Journal of Membrane Science,2006,281(1-2):42-69. [22] Campbell M J,Walter R P, McLoughlin R,et al.Effect of temperatureon protein conformation and activity during ultrafiltration[J]. Journal of Membrane Science,1993,78:35-43. [23] Wang B-J,Wei T-C,Yu Z-R. Effect of operating temperature on component distribution of West Indian cherry juice in a microfiltration system[J]. LWT - Food Science and Technology,LWT - Food Science and Technology,2005,38(6):683-689. [24] Simmons M J M,Jayaraman P,Fryer P J.The effect of temperature and shear rate upon the aggregation of whey protein and its implications for milk fouling[J]. Journal of Food Engineering,2007,79(2):517-528. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号