Pebax/SAPO-34混合基质膜的制备及性能研究
作者:赵丹12,任吉中1,?,李晖1,张立秋12,李新学1,邓麦村1
单位: 1. 洁净能源国家实验室, 大连化学物理研究所,大连 116023;2. 中国科学院大学,北京 100049
关键词: :Pebax; 混合基质膜; 溶剂
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2014,34(5):9-15

摘要:
选用Pebax1657和SAPO-34为膜材料,分别采用醋酸和1-丁醇为溶剂,通过流延法制备Pebax/SAPO-34混合基质膜(MMMs).研究发现溶剂能显著地影响膜的结构形态以及渗透性能.纯Pebax膜的气体渗透系数受溶剂的影响较大,而选择性受溶剂影响不大.对于分子筛含量较高(33wt%)的MMMs,以1-丁醇为溶剂时,分子筛的分散均匀程度更高,但就材料的成膜性而言,醋酸为溶剂时更好.MMMs中气体渗透系数的变化是结晶度、扩散曲度、链段运动能力和膜形态等因素的共同作用的结果.醋酸为溶剂时,由于相分离的发生,气体的渗透系数出现突跃,最大提高到纯Pebax膜的3倍.1-丁醇为溶剂时,除H2外,气体渗透系数先出现一定程度的提高,而后由于受到链段僵化以及扩散曲度的影响而降低.
Poly (amide-6-b-ethylene oxide) (Pebax1657) and SAPO-34 were used to prepare Pebax1657/SAP-O34 mixed matrix membranes (MMMs) by solution-casting method with 1-butanol and acetic acid as solvent respectively. It was found that the casting solvent had more influence on permeability rather than selectivity. The MMMs prepared with 1-butanol had better zeolite distribution at high zeolite content, but the better membrane-forming was belonged to that prepared with acetic acid. The change of permeability was the co-effect of crystallization, diffusivity tortuosity, mobility of polymer chain and membrane morphology. When acetic acid was used, due to the phase separation, the permeability showed a jump and maximum reached 3 fold of the pristine Pebax membrane, and when 1-butanol was used, except for H2, the permeabilities of other gases increased initially and then decreased as a result of chain rigidification and increased diffusivity tortuosity.

基金项目:
863基金资助项目;国家科技支撑项目

作者简介:
赵丹(1987-),女,河南新乡人,博士,从事膜分离技术的研究。

参考文献:

[1] Sridhar, S., T.M. Aminabhavi, S.J. Mayor, et al. Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite Pebax membranes [J]. Ind Eng Chem Res, 2007, 46 (24): 8144-8151.
[2] Ahmad, A.L., Z.A. Jawad, S.C. Low, et al. A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation [J]. J Membrane Sci, 2014, 451 (0): 55-66.
[3] Lin, H.Q. and B.D. Freeman. Materials selection guidelines for membranes that remove CO2 from gas mixtures [J]. Journal of Molecular Structure, 2005, 739 (1-3): 57-74.
[4] Liang, L., Q. Gan, and P. Nancarrow. Composite ionic liquid and polymer membranes for gas separation at elevated temperatures [J]. J Membrane Sci, 2014, 450 (0): 407-417.
[5] 赵红永, 曹义鸣, 康国栋, et al. 聚氧化乙烯气体分离膜的发展 [J]. 膜科学与技术, 2011,  (03).
[6] Lin, H. and B.D. Freeman. Gas solubility, diffusivity and permeability in poly(ethylene oxide) [J]. J Membrane Sci, 2004, 239 (1): 105-117.
[7] Ren, X.L., J.Z. Ren, and M.C. Deng. Poly(amide-6-b-ethylene oxide) membranes for sour gas separation [J]. Sep Purif Technol, 2012, 89: 1-8.
[8] Bondar, V.I., B.D. Freeman, and I. Pinnau. Gas transport properties of poly(ether-b-amide) segmented block copolymers [J]. J Polym Sci Pol Phys, 2000, 38 (15): 2051-2062.
[9] Bondar, V.I., B.D. Freeman, and I. Pinnau. Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers [J]. J Polym Sci Pol Phys, 1999, 37 (17): 2463-2475.
[10] Kim, J.H., S.Y. Ha, and Y.M. Lee. Gas permeation of poly(amide-6-b-ethylene oxide) copolymer [J]. J Membrane Sci, 2001, 190 (2): 179-193.
[11] 冯世超, 任吉中, 任晓灵, et al. 聚醚共聚酰胺/聚乙二醇共混膜的制备及其气体渗透性能的研究 [J]. 膜科学与技术, 2012,  (05): 27-33.
[12] 任晓灵, 任吉中, and 邓麦村. 聚醚共聚酰胺多层复合气体分离膜的制备及其分离性能 [J]. 膜科学与技术, 2012,  (02): 30-35.
[13] Feng, S., J. Ren, Z. Li, et al. Poly(amide-12-b-ethylene oxide)/glycerol triacetate blend membranes for CO2 separation [J]. J. Greenhouse Gas Control, 2013, 19 (0): 41-48.
[14] Freeman, B.D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes [J]. Macromolecules, 1999, 32 (2): 375-380.
[15] Amnuaypanich, S., J. Patthana, and P. Phinyocheep. Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures [J]. Chem Eng Sci, 2009, 64 (23): 4908-4918.
[16] Chung, T.S., L.Y. Jiang, Y. Li, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation [J]. Prog Polym Sci, 2007, 32 (4): 483-507.
[17] Li, G., J.H. Yang, J.Q. Wang, et al. Thin carbon/SAPO-34 microporous composite membranes for gas separation [J]. J Membrane Sci, 2011, 374 (1-2): 83-92.
[18] Li, S.G., J.L. Falconer, and R.D. Noble. SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio [J]. Microporous Mesoporous Mat, 2008, 110 (2-3): 310-317.
[19] Karatay, E., H. Kalipcilar, and L. Yilmaz. Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes [J]. J Membrane Sci, 2010, 364 (1-2): 75-81.
[20] Jha, P. and J.D. Way. Carbon dioxide selective mixed-matrix membranes formulation and characterization using rubbery substituted polyphosphazene [J]. J Membrane Sci, 2008, 324 (1-2): 151-161.
[21] Zoppi, R.A., C.R. deCastro, I.V.P. Yoshida, et al. Hybrids of SiO2 and poly(amide 6-b-ethylene oxide) [J]. Polymer, 1997, 38 (23): 5705-5712.
[22] Yave, W., A. Car, S.S. Funari, et al. CO2-Philic Polymer Membrane with Extremely High Separation Performance [J]. Macromolecules, 2010, 43 (1): 326-333.
[23] Merkel, T.C., V.I. Bondar, K. Nagai, et al. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) [J]. J Polym Sci Pol Phys, 2000, 38 (3): 415-434.
[24] Lin, H.Q., E. Van Wagner, B.D. Freeman, et al. Plasticization-enhanced hydrogen purification using polymeric membranes [J]. Science, 2006, 311 (5761): 639-642.
[25] Kim, J.H. and Y.M. Lee. Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes [J]. J Membrane Sci, 2001, 193 (2): 209-225.
[26] Moore, T.T. and W.J. Koros. Non-ideal effects in organic-inorganic materials for gas separation membranes [J]. Journal of Molecular Structure, 2005, 739 (1-3): 87-98.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号