聚合物辅助超滤技术处理含铈废水 |
作者:潘玲,陆晓峰,陈利芳,申利国,秦强,刘忠英,王帅 |
单位: 中国科学院上海应用物理研究所,上海201800 |
关键词: 聚乙烯亚胺(PEI);络合;超滤;放射性废水;铈 |
DOI号: |
分类号: |
出版年,卷(期):页码: 2014,34(6):67-71 |
摘要: |
使用聚乙烯亚胺(PEI)辅助超滤法处理放射性废水中的铈(Ce)。着重研究了pH,聚合物/金属离子质量比(P/M),离子浓度以及操作压力、运行时间对铈离子(Ce3+)截留率和膜渗透通量的影响。研究结果显示:使用聚合物PEI辅助超滤时,最佳实验条件为pH=5,P/M=15;在最适pH和P/M比值下,三种截留分子量超滤膜对Ce3+截留率分别为88.23%(5kDa)、87.01%(10kDa)和89.78%(30kDa);当溶液中存在Na+和Ca2+时,膜对Ce3+的截留率将会降低。膜通量随着操作压力的增加呈线性增加;三种膜通量均随着运行时间的增加有减小的趋势,且下降率顺序为30kDa >10kDa> 5kDa。 |
Polyethyleneimine(PEI) was used to assist ultrafiltration to remove cerium from radioactive wastewater. The effects of pH, mass ratio of polymer to metal (P/M), ionic concentration, transmembrane pressure and processing time on retention of cerium and membrane permeate fluxeswere investigated. The results showthat when using PEI assist ultrafiltration,the optimum pH value and P/M value are 5 and 15, respectively; at the optimum conditions, the retentions of three different molecular weight cut-off (MWCO)membranesare 88.23% (5kDa), 87.01% (10kDa) and 89.78% (30kDa), respectively; in addition, the retention of cerium will decrease when Na+ and Ca2+ are exist in solution.The membranepermeate flux is linear increase with the increase of transmembrane pressure;Three kinds of membrane permeate flux have a tendency to decrease with the increase of operation time,and the rank of three membranespermeate flux decrease rate is: 30kDa >10kDa> 5kDa. |
基金项目: |
上海市科技攻关项目(08231200300) |
作者简介: |
潘玲(1988-),女,安徽滁州人,硕士研究生,研究方向为超滤技术在放射性废水中的应用,E-mail:panling@sinap.ac.cn. |
参考文献: |
[1]朱永懿,裘同才.裂变产物90Sr、137Cs和144Ce在土壤—植物系统中行为[J] .中国核科技报告,1988,(00):879-889. [2]Charerntanyarak L.Heavy metals removal by chemical coagulation and precipitation[J].Water SciTechnol,1999,39(10/11):135-138. [3]Li Y J,Zeng X P,Liu Y F,et al.Study on the treatment of copper-electroplating wastewater by chemical trapping and flocculation [J]. Sep PurifTechnol, 2003, 31:91-95. [4]Semerjian L, Ayoub G M. High-pH–magnesium coagulation–flocculation in wastewater treatment [J].AdvEnvironRes, 2003, 7: 389-403. [5]Abreu R D,Morais C A. Purification of rare earth elements from monazite sulphuric acid leach liquorand the production of high-purity ceric oxide [J]. Miner Eng, 2010, 23: 536-540. [6]Preston J S, Cole P M, du Preez A C, et al. The recovery of rare earth oxides from a phosphoricacid by-product. Part 2: The preparation ofhigh-purity cerium dioxide and recovery of a heavyrare earth oxide concentrate [J]. Hydrometallurg, 1996, 41: 21-44. [7]Smara A, Delimi R, Chainet E, et al. Removal of heavy metals fromdiluted mixtures by a hybrid ion-exchange/electrodialysis process [J]. SepPurifTechnol, 2007, 57: 103-110. [8]Dabrowski A,HubickiZ,PodkoscielnyP,et al. Selective removal of theheavymetals fromwaters and industrialwastewaters by ion-exchangemethod [J]. Chemosphere, 2004, 56(2): 91-106. [9]杨座国.膜科学技术过程与原理[M].上海:华东理工大学出版社,2009. 1-312. [10]Kryvoruchko A P, Yurlova L Y, Atamanenko I D, etal.Ultrafiltration removal of U(VI) from contaminated water[J]. Desalination, 2004,162:229-236. [11]Fabiani C, Francesco M D, Galata P, et al. Strontium separation with Ultrafiltration membranes from dilute aqueoussolutions[J]. SepSciTechnol,1986,21(4):353-366. [12]Trznadel G Z. Radioactive solutions treatment by hybridcomplexation–UF/NF process[J]. JMembrSci, 2003, 225:25-39. [13]Zeng J X, Ye H Q, Hu Z Y. Application of the hybrid complexation–ultrafiltrationprocess for metal ion removalfrom aqueous solutions [J]. JHazardMater, 2009, 161: 1491–1498. [14]Muslehiddinoglu J, Uludag Y, Ozbelge H O, et al.Determination of heavy metal concentration in feed and permeate streams of polymer enhanced ultrafiltration process [J].Talanta, 1998, 46:1557–1565. [15]Maketon W, Ogden K L. Synergistic effects of citric acid and polyethyleneimine to remove copper from aqueous solutions [J]. Chemosphere, 2009, 75(2) : 206–211. [16]Juang R S, Chiou C H. Ultrafiltration rejection of dissolved ions using variousweakly basic water-soluble polymers [J]. JMembrSci,2000, 177: 207–214. [17]Zakrzewska-Trznadel G, Harasimowicz M. Removal of radionuclides by membrane permeation combined with complexation [J]. Desalination, 2002, 144(1-3): 207-212. [18]Cojocaru C, Zakrzewska-Trznadel G, Jaworska A. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. part 1: Optimization of complexation conditions [J]. J Hazard Mater, 2009, 169: 599-609. [19]李雯玺,邵嘉慧,蒯琳萍,等.聚乙烯亚胺辅助超滤法处理含锶含钴废水[J].净水技术,2011,30(4):31-34. [20]Uludag Y, Ozbelge H O, Yilmaz L. Removal of mercury from aqueous solutions via polymer-enhanced ultrafiltration [J]. JMembrSci, 1997, 129: 93-99. [21]Trivunac K, Stevanovic S. Removal of heavy metal ions from water by complexation-assisted ultrafiltration [J]. Chemosphere, 2006, 64(3): 486–491. [22]Muslehiddinoglu J, Uludag Y, Ozbelge H O, et al. Effect of operating parameters on selective separation of heavy metals from binary mixture via polymer enhanced ultrafiltration [J]. J Membr Sci, 1998, 140: 251-266. [23]Aliane A, Bounatiro N, Cherif A T, et al. Removal of chromium from aqueous solution by complexation – ultrafiltration using a water-soluble macroligand [J]. Water Research, 2000, 35(9): 2320–2326. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号