十七氟癸基修饰的疏水二氧化硅膜材料的制备及氢气分离性能 |
作者:丁元利,韦奇,刘相革,李群艳,聂祚仁 |
单位: 北京工业大学材料科学与工程学院,北京,100124 |
关键词: 十七氟癸基;溶胶-凝胶法;疏水SiO2膜;氢气分离 |
DOI号: |
分类号: O613.72 |
出版年,卷(期):页码: 2014,34(6):22-27 |
摘要: |
通过溶胶-凝胶法,以正硅酸乙酯(TEOS)和十七氟癸基三乙氧基硅烷(PFDTES)为前驱体,在酸性和洁净室条件下制备了十七氟癸基修饰的SiO2膜材料,分别通过动态光散射技术、接触角测量、红外光谱以及热重分析等测试手段对溶胶的粒径分布及膜材料的疏水性能进行了表征,并深入研究了十七氟癸基修饰后膜材料的氢气渗透和分离性能。结果表明,当摩尔比n(PFDTES)/n(TEOS)=0.2时,溶胶的粒径狭窄分布在3.9nm。十七氟癸基已成功修饰到SiO2膜材料中,十七氟癸基的修饰使得膜材料从亲水性变为疏水性,在上述摩尔比例下,膜材料对水的接触角达到112.0°±0.6°。H2的单组分渗透率随温度的升高而增大,300 °C时达到10.00×10-7 mol·m-2·s-1·Pa-1,H2/CO2的单组分理想分离系数及双组分分离系数分别达到6.10和13.30,均高于其Knudsen扩散分离因子(4.69),H2在膜材料中的输运主要遵循活化扩散机理。 |
A sol-gel technique was used to synthesize perfluorodecyl-modified silica membranes with tetraethyl orthosilicate (TEOS) and 1H,1H,2H,2H-Perflouorodecyltriethoxysilane (PFDTES) as precursors under acidic and clean room conditions. The particle size distribution of silica sols and the hydrophobic properties of modified silica membranes were characterized by means of dynamic light scattering(DLS), water contact angle measurement, Fourier translation infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TG). The hydrogen permeation and separation performance of modified silica membranes were also investigated in detail. The results show that when the molar ratio of PFDTES/TEOS reaches 0.2, the modified silica sols have a particle size centered at 3.90nm, which is extremely suitable for dip-coating. Perfluorodecyl groups have been successfully incorporated and hydrophobic silica membranes with a water contact angle of 112.0°±0.6° are obtained at above-mentioned molar ratio. The hydrogen transport in modified silica membranes complies predominantly with activated diffusion mechanism, as demonstrated by the fact that the hydrogen permeance increases with increasing temperatures. At a temperature of 300°C, the modified membranes exhibit a significantly high H2 permeance of 10.00×10-7 mol·m-2·s-1·Pa-1, a H2/CO2 permselectivity of 6.10 and a H2/CO2 binary gas mixture separation factor of 13.30, higher than that of Knudsen diffusion(4.69). |
基金项目: |
国家自然科学基金项目(批准号:21171014,50502002)、国家863计划课题(批准号:2009AA03Z213)、北京市教委科技计划重点项目资助(批准号:KZ201410005006). |
作者简介: |
丁元利(1989-),男,硕士研究生,山东临沂人,主要从事用于气体分离的二氧化硅膜材料的制备与表征. |
参考文献: |
[1] Brunetti A, Caravella A, Barbieri G, et al. Simulation study of water gas shift reaction in a membrane reactor[J]. J Membr Sci, 2007, 306: 329-340 [2] Petra S, Andrej Z, Francoise M I. Activities on application of nuclear techniques in development and characterization of materials for hydrogen economy[J]. Advanced Materials Research, 2011, 324: 461-464 [3] Benes N E. Mass Transport in Thin Supported Silica Membranes[D]. Enschede:University of Twente, 2000 [4] Ockwig N W, Nenoff T M. Membranes for Hydrogen Separation[J]. Chem Rev, 2007, 107(10): 4078-4110 [5] Baker R W. Research needs in the membrane separation industry:Looking back, looking forward[J]. J Membr Sci, 2010, 362: 134-136 [6] 韦 奇,李建林,宋春林,等. 微孔二氧化硅膜的制备,氢气分离以及水热稳定性研究[J].无机材料学报,2004, 19(1): 133-139 [7] De Vos R M, Verweij H. High-Selectivity, High-Flux Silica Membranes for Gas Separation[J]. Science, 1998, 279: 1710-1711 [8] Battersby S, Tasaki T, Smart S, et al. Performance of cobalt silica membranes in gas mixture separation[J]. J Membr Sci, 2009, 329(2): 91-98 [9] Kanezashi M, Asaeda M. Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature[J]. J Membr Sci, 2006, 271(1-2): 86-93 [10] Gu Y, Hacarlioglu P, Oyama S T. Hydrothermally stable silica-alumina composite membranes for hydrogen separation[J]. J Membr Sci, 2008, 310(1-2): 28-37 [11] Ohta Y, Akamatsu K, Sugawara T, et al. Development of pore size-controlled silica membranes for gas separation by chemical vapor deposition[J]. J Membr Sci, 2008, 315: 93-98 [12] Hegde N D, Rao A V. Organic modification of TEOS based silica aerogels using hexadecyltrimethoxysilane as a hydrophobic reagent[J]. Appl Surf Sci, 2006, 253: 1566-1572 [13] Bhagat S D, Rao A V. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process[J]. Appl Surf Sci, 2006, 252: 4289-4297 [14] 韦 奇,李建林,宋春林,等. 憎水二氧化硅膜的制备表征、水热稳定性研究[J].无机材料学报,2004, 19(2): 417-423 [15] Hessel L. C, Ashima S, Robert K, et al. Hybrid ceramic nanosieves: stabilizing nanopores with organic links[J]. Chem Commun, 2008: 1103-1105 [16] 段小勇,韦 奇,何 俊,等. 表面修饰的有机-无机杂化微孔SiO2膜的制备及氢气分离性能[J].高等学校化学学报,2011, 32(10): 2256-2261 [17] 王学伟,韦 奇,洪志发,等. 三氟丙基修饰的有机-无机杂化二氧化硅膜制备、氢气分离及水热稳定性能[J].化学学报, 2012, 70(24): 2529-2535 [18] 宋 霖,韦 奇,郝润秋,等. 十七氟癸基修饰的有机-无机杂化二氧化硅膜材料制备及气体分离研究[J].高等学校化学学报,2012, 33(8): 1670-1676 [19] Hessel L C, Ashima S, Robert K, et al. Hybrid ceramic nanosieves: stabilizing nanopores with organic links[J]. Chemical Communications, 2008, 9: 1103-1105. [20] 王学伟. 用于水煤气变换反应的三氟丙基修饰有机-无机杂化SiO2膜材料研究[D].北京:北京工业大学,2013: 20-22 [21] 宋 霖. 十七氟癸基修饰的有机-无机杂化二氧化硅膜材料及氢气分离研究[D].北京:北京工业大学,2012: 11-25 [22] 洪志发,韦奇,李国华,等.三氟丙基修饰的二氧化硅膜制备、氢气分离及其水热稳定性能[J].无机化学学报,2013, 29(5): 941-947 [23] 李振杰,韦奇,魏娜娜,等. 苯基修饰的疏水微孔二氧化硅膜的制备与表征[J].高等学校化学学报,2010: 2482-2487 [24] 王艳丽. 乙烯基修饰的微孔二氧化硅膜制备及氢气分离研究[D].北京:北京工业大学,2007: 21-25 [25] Feng L, Zhang Z Y, Mai Z H, et al. A Super-Hydrophobic and Super-Oleopilic Coating Mesh Film for the Separation of Oil and Water[J]. Angewandte Chemie International Edition, 2004, 43: 2013 [26] De Vos R M, Maier W F, Verweij H. Hydrophobic silica membranes for gas separation[J]. J Membr Sci, 1999, 158: 277-288 [27] Castricum H L, Paradis G G, Mittelmeijer-Hazeleger M C, et al. Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group[J]. Advanced Functional Materials, 2011, 21: 2319-2329 [28] Kim Y S, Kusakabe K, Morooka S, et al. Preparation of microporous silica membranes for gas separation[J]. J.Chem.Eng, 2001,18: 106-112 |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号