Pd/SiO2有机-无机薄膜的制备及其在N2气氛中的热稳定性 |
作者:杨靖,许好,李保松,霍翔,李悦 |
单位: 西安工程大学环境与化学工程学院,陕西 西安 710048) |
关键词: Pd/SiO2薄膜;溶胶-凝胶法;疏水性;热稳定性 |
DOI号: |
分类号: O484 |
出版年,卷(期):页码: 2015,35(1):9-13 |
摘要: |
采用溶胶-凝胶法,在甲基化改性SiO2溶胶中掺杂PdCl2,制备Pd/SiO2有机-无机薄膜。通过XRD、红外光谱、TG-DTG分析、接触角以及SEM测试,考察该样品在N2气氛中的热稳定性。结果表明,Pd/SiO2膜材料经200 ℃以上温度焙烧后,样品中即出现了少量纳米金属Pd粒子,这些金属Pd为PdCl2还原所得。随着焙烧温度的升高,金属Pd粒子的衍射峰强度增加,膜材料中的Si-CH3吸收峰和Si-OH吸收峰减弱。样品中的Si-CH3吸收峰在750 ℃时完全消失。金属Pd的掺杂对SiO2膜材料的化学结构基本没影响。保持Pd/SiO2有机-无机薄膜及分离膜疏水性的最适宜焙烧温度为350 ℃。 |
Pd/SiO2 organic-inorganic films were prepared by sol-gel method, in which PdCl2 was added into methyl-modified silica sol. According to XRD, FTIR spectra, TG-DTG analysis, contact angle and SEM measurement, the thermal stability of Pd/SiO2 samples in N2 atmosphere was discussed. The results show that, metallic palladium peaks can be found in the Pd/SiO2 materials calcined at 200℃. The metallic palladium results from the reduction of PdCl2. With the increase of calcination temperature, the diffraction peaks of metallic palladium in intensity increase, the SiCH3 and Si-OH bands in Pd/SiO2 samples are found to be decreased in absorption intensity. As the calcining temperature reaches 750 C, the SiCH3 band completely disappears. The introduction of metallic palladium has little influence on the chemical structure of the methyl-modified silica materials. In order to preserve the hydrophobicity of Pd/SiO2 films and membranes, the optimal calcination temperature should be 350 C. |
基金项目: |
国家自然科学基金(21103132);陕西省自然科学基金(2011JQ2016);陕西省教育厅自然科学专项基金(12JK0591)和西安工程大学博士科研启动基金(BS1006)资助 |
作者简介: |
杨靖(1976-),女,湖北武汉人,博士,副教授,硕士生导师,从事膜分离技术的研究. < jingy76@163.com> |
参考文献: |
[1] Nijmeijer A. Hydrogen Selective Silica Membranes for use in Membrane Steam Reforming[D]. University of Twente, F.A. van Vugst, Enschede, 1999.12. [2] Lu G Q, da Costa J C D, Duke M, et al. Inorganic membranes for hydrogen production and purification: A critical review and perspective [J]. Journal of Colloid and Interface Science, 2007, 314: 589-603. [3] Huang T C, Wei M C, Chen H I. Preparation of hydrogen-permselective palladium-silver alloy composite membranes by electroless co-deposition[J]. Separation and Purification Technology, 2003, 32(1-3): 239-245. [4] Bosko M L, Miller J B, Lombardo E A, et al. Surface characterization of Pd-Ag composite membranes after annealing at various temperatures[J]. Journal of Membrane Science, 2011, 369(1-2): 267-276. [5] Okazaki J, Ikeda T, Tanaka D A P, et al. An investigation of thermal stability of thin palladium-silver alloy membranes for high temperature hydrogen separation[J]. Journal of Membrane Science, 2011, 366(1-2): 212-219. [6] Kanezashi M, Yada K, Yoshioka T, et al. Organic–inorganic hybrid silica membranes with controlled silica network size: Preparation and gas permeation characteristics[J]. Journal of Membrane Science, 2010, 348(1-2): 310-318. [7] Levy R A , Ramos E S , Krasnoperov L N , et al. Microporous SiO2/Vycor membranes for gas separation[J]. Journal of Materials Research, 1996,11(12): 3164-3173. [8] De Vos R M, Maier W F, Verweij H. Hydrophobic silica membranes for gas separation[J]. Journal of Membrane Science, 1999,158 (1-2): 277-288. [9] Williams M, Pineda-Vargas C A, Khataibe E V, et al. Surface functionalization of porous ZrO2-TiO2 membranes using γ-aminopropyltriethoxysilane in palladium electroless deposition[J]. Applied Surface Science, 2008,254(10):3211-3219. [10] Gestel T V, Sebold D, Hauler F, et al. Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants: Evaluation of SiO2, ZrO2, Y2O3-ZrO2 and TiO2-ZrO2 sol–gelmembranes[J]. Journal Of Membrane Science, 2010, 359, (1-2):64-79. [11] 王飞,韦奇,王艳丽,等. 碳氟基团修饰的疏水微孔二氧化硅膜的制备与表征[J]. 化学学报, 2008, 66(1): 44-48. [12] Cui S, Liu Y, Fan M, et al. Temperature dependent microstructure of MTES modified hydrophobic silica aerogels[J]. Materials Letters, 2011, 65(4): 606-609. [13] 顾永建, 钟顺和. Pd修饰的选择分离氢的负载型PI-SiO2杂化膜的制备及应用[J]. 催化学报, 2006,27(3): 250-254. [14] Yang J, Chen J R. Surface free energies and steam stability of methyl-modified silica membranes[J]. Journal of Porous Materials, 2009,16(6):737-744. [15] 杨雨,钱国栋,王民权.MTES-TEOS先驱液水解-缩聚机理及其凝胶玻璃性能研究[J].材料科学与工程,2000,18(3):52-56. [16] Bhagat S D, Kim Y H, Ahn Y S. Room temperature synthesis of water repellent silica coatings by the dip coat technique[J]. Applied Surface Science, 2006, 253(4): 2217-2221. [17] Jiang H M, Zheng Z, Wang X L. Kinetic study of methyltriethoxysilane (MTES) hydrolysis by IR spectroscopy under different temperatures and solvents[J]. Vibrational spectroscopy, 2008, 46(1): 1-7. [18] 杨定国. 波谱分析基础及应用[M]. 北京: 中国纺织出版社, 1993: 78-80. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号