中空纤维支撑液膜去除水中氨氮的传质行为研究
作者:胡闻龙,王磊,张荣,王旭东,吕永涛
单位: 西安建筑科技大学环境与市政工程学院,陕西 西安 710055
关键词: 氨氮;中空纤维支撑液膜;传质;D2EHPA
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2015,35(1):14-19

摘要:
以聚丙烯(pp)中空纤维膜为支撑体,二(2-乙基己基)磷酸(简称D2EHPA)为载体,煤油为膜溶剂,探讨D2EHPA-煤油-H2SO4中空纤维支撑液膜(SLM)体系对水中氨氮的传质行为。以去除率为指标,考察了料液初始氨氮浓度及pH值、载体浓度、反萃剂浓度对传质效果的影响;并通过对比实验分析了导致传质速率降低的主要原因。结果表明:在反萃剂H2SO4浓度为2 mol/L,料液相pH值在8~13范围内,提高料液pH值、增大膜相中载体浓度,均能提高氨氮的去除率。D2EHPA-煤油-H2SO4体系对氨氮的传质能力随氨氮浓度降低而下降。料液中氨氮浓度下降和pH值降低是导致氨氮传质速率降低的主要原因,调节料液pH值可调控和提高氨氮的去除与传质效果。
The mass transfer behavior of ammonia-nitrogen from aqueous media through hollow fiber supported liquid membrane process consisting of di(2-ethylhexly)phosphoric acid(D2EHPA) in kerosene, supported on the polypropylene hollow fiber membrane, was studied. The influence of the initial pH value and ammonia-nitrogen concentration in feed phase, the carrier concentration and the acid concentration in stripping phase on ammonia removal is also characterized by the removal rate. The primary reason of the ammonia removal rate which is constantly declining is discussed by the contrast experiment. The results show that when the acid concentration is 2 mol/L and the pH value is within the range of 8 to 13, the removal rate can be improved by increasing ammonia concentration, pH value of feed and the carrier concentration. The capacity of D2EHPA-kerosene-H2SO4 system for ammonia mass transfer decreases with decreasing ammonia concentration.The decline of Ammonia removal rate is mainly caused by lowering pH and reducing ammonia concentration in feed solution.Adjusting the pH value can improve the control and effects of mass transfer.

基金项目:
国家自然科学基金项目(No.51178378);陕西省科技创新项目(No.2012KTCL03-06;No.2013KTCL03-16)

作者简介:
胡闻龙(1988—),男,辽宁本溪人,硕士研究生,主要从事液膜分离技术的研究,wo2813531@sina.com,18392180577;王磊(1971—),男,教授,博士生导师,主要从事水污染控制及废水再生等理论与技术的研究,通讯联系人,wl0178@126.com,西安建筑科技大学环境与市政工程学院,邮编710055

参考文献:
[1]崔树军, 谷立坤, 张建云, 等. 高氨氮废水的处理技术及研究应用现状[J]. 中国给水排水, 2010, 26(14): 26-29.
[2]何岩, 赵由才, 周恭明. 高浓度氨氮废水脱氮技术研究进展[J]. 工业水处理, 2008, 28(1): 1-4.
[3]刘健, 李哲. 氨氮废水的处理技术及发展[J]. 矿冶工程, 2007, 27(4): 54-60.
[4]顾忠茂. 液膜分离技术进展[J]. 膜科学与技术, 2003, 23(4): 214-223.
[5]Sastre A M, Kumar A, Shukla J P, et al. Improved techniques in liquid membrane separations: an overview[J]. Separation and Purification Methods, 1998, 27(2): 213-298.
[6]张卫东, 李爱民, 李雪梅, 等. 液膜技术原理及中空纤维更新液膜[J]. 现代化工, 2005, 25(4): 66-68.
[7]周富荣, 肖浩. Span80-Tween60/T154/煤油/H_2SO_4 微乳液膜处理氨氮废水[J]. 环境工程学报, 2007, 1(5):65-68.
[8]刘利民, 余侃萍, 肖国光, 等. 液膜萃取法处理冶金氨氮废水的研究[J]. 矿冶工程, 2007, 27(5): 44-46.
[9]Gozzelino G. State of art of the research on supported liquid membranes[J]. Membrane Science and Technology, 2000, 20: 46-54.
[10]杜军, 周堃, 陶长元. 支撑液膜研究及应用进展[J]. 化学研究与应用, 2004, 16(2): 160-164.
[11]王俊九, 褚立强, 范广宇, 等. 支撑液膜分离技术[J]. 水处理技术, 2001, 27(4): 187-191.
[12]Kocherginsky N M, Yang Q, Seelam L. Recent advances in supported liquid membrane technology[J]. Separation and Purification technology, 2007, 53(2): 171-177.
[13]Malik M A, Hashim M A, Nabi F. Ionic liquids in supported liquid membrane technology[J]. Chemical Engineering Journal, 2011, 171(1): 242-254.
[14]Qin Y, Cabral J. Hollow fiber supported liquid membrane process for the separation of NH3 from aqueous media containing NH3 and CO2[J]. Journal of Chemical Technology and Biotechnology, 1996, 65(2): 137-148.
[15]王碧玉, 潘自鼎, 吴燕翔. 氨在中空纤维支撑液膜内的渗透系数[J]. 福州大学学报 (自然科学版), 2005, 33(2): 250-253.
[16]余美琼, 洪新艺, 吴燕翔, 等. 支撑液膜法脱除氨氮过程中氨(铵)在膜相和水相中的分配[J]. 化学工程与装备, 2006(3): 7-11.
[17]王婷, 曹磊, 薛明霞. 纳氏试剂分光光度法测定氨氮中常见问题与解决办法[J]. 分析试验室, 2008, 27(B12): 346-349.
[18]周春明. 纳氏比色法测定总氨氮时NH3, NH4+含量的计算[J]. 渔业现代化, 2000, 6: 21-22.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号